Page 1 of 6

Alastair Llewellyn Drong

Senior Project:

Dripple: The Creation and Implementation of Pie Menus in Java
Pie menus can be thought of like a pie chart, but instead of a list that drops below the cursor, the items in the menu appear around the cursor. This minimizes the distance the cursor has to travel to any given item in the menu. This creates a more efficient computer usage as the user is spending less time making the cursor travel to the desired menu option. More important than user efficiency, it is something that provides another option for a commonly needed program feature and at the same time provides a solution to a topic in computer science that is slowly gaining interest as a new method for users to interact with their machines.
Before anything can be done, a data structure has to be decided on in order to store all the information needed in the menu. We know that we will need to provide the programmer with as many menu options as may be needed, so it has to be dynamic, and we need one special node in the list to serve as the defined clickable region, or button for lack of a better term, that the user can click on to display the items in the menu. This makes the obvious choice a linked list. The header node can serve as both the button and a way to hide the less elegant but necessary parts of code from the programmer who is going to use the class files. A tree of some variety could also be used, but it is more often the case that you need to transverse all the nodes anyway which defeats part of the purpose of a tree.
The difficulty of pie menus is telling the computer where to place each item in the menu; you have to know how to find an unknown number of points on a circle around a given point. One common need for finding points on a circle is finding the points on an ‘n’ pointed star.
angle=(ct/2)*2*Math.PI/ct;
…

x=hpos+(int)(radius*Math.sin(angle*which));

y=vpos-(int)(radius*Math.cos(angle*which));

The variable “ct” is the number of items in the menu so far, the variable “which” is incremented for each new menu item, the variables “hpos” and “vpos” are the upper left points horizontally and vertically respectively of the defined clickable region that makes the menu appear, the variables “x” and “y” are the upper left points of where to paint this menu item as defined by “which”. This method gives points that result in nice symmetrical points. But if we do the math for when “ct” is eight, we get the following points when our “radius” is 25, our “hpos” is 250 and our “vpos” is 150: (250, 125), (250, 175), (250, 125), (250, 175), (250, 125), (250, 175), (250, 125), (250, 175). The menu items overlap. While the method works fine for any odd number for “ct”, it does not work for even numbers excluding two, four and six.

Another solution to the problem that would work for any value of “ct” would be to find the points on a “ct” sided polygon.

double angle=2*Math.PI*which/ct;

x=hpos+(int)(radius*Math.cos(angle));

y=vpos+(int)(radius*Math.sin(angle));

The less obvious problem here is that, while ideal for even numbers, it fails to maintain a vertical line of symmetry for odd values of “ct”. Ultimately the solution is to use the star method for odd values of “ct” and to use the polygon method for even numbers of “ct”. A future version could use the polygon solution where “angle” could be adjusted by so many degrees according to the value of “ct” to maintain symmetry and to eliminate the star method of determining points.

Before we can go about finding these points, however, we need to know the radius at which to put them to minimize the amount of overlapping any two menu items may have. The function “set_radius(final int ct)” does this by looking at the vertical coordinates for the first two menu items and increases the radius until they no longer overlap when their height is also taken into account.

Once the menu items are positioned in a circle, they have to be bumped and nudged a bit to address a number of issues. “align(final int hpos, final int vpos, final int but_width)”. Because each menu item is painted in a circle around the upper left corner, “hpos” and “vpos”, of the button and also because the width of this region varies according to how long the string it is given is, some of the menu items cover over the button. “align” adds “but_width” to “x” for values of “x” that are greater than “hpos” which is the upper left corner of the button and is sent in by the header node. This eliminates the overlap, but in cases where “ct” is odd, leaves the first menu item out of place. To correct this you have to add to “x” the difference of the width of the button and the width of the menu item. This centers the first item over the. Items where “x” is less than “hpos”, the width of the menu item is subtracted from x. These help maintain a vertical line of symmetry.

While everything is now positioned symmetrically, it still doesn’t look symmetrical because the width of each menu item is, like the button, dependant on how long the string is. To correct this, each element in the linked list has to know which element is horizontally across from it. If we were to number each item in the list starting from one, we could take the number of a given node and subtract that number from “ct+2” to get the number of the node directly across from it. That is to say the first node plus the node directly across from it will equal “ct+2”. Now that we know which menu item is the one directly across, we have to get to it, evaluate and if it has the larger width value, in which case it will pass back its value leaving itself unchanged, or if has the smaller width value and must change itself. To do this, two methods are implemented: “find_opp(final int which, final int ct)” and “tell_opp(final int opp, final int wth, final int which)”. “find_opp” traverses the first half of the list, stopping at each element to calculate what number represents the node across from it and calls “tell_opp” which transverses the list until the variables “which” and “opp” match meaning that this node is the one opposite from whichever one initially called “tell_opp”. The function “tell_opp” then assigns the width “wth” to itself if “wth” is larger and then returns a 0. If “wth” is smaller than the width of that menu element, its own width is returned to the instance of “find_opp” that called “tell_opp” so that the larger width can be assigned to that node. If neither condition matches, negative one is returned as an error.

In order to be useful, the menu has to be able to be placed just about anywhere on the screen that the programmer using the dirpple classes desires and because dripples tend to be wider than they are taller, they have to be placed on either side of the screen without it being hidden from the user by going off the edge of the java frame that it is in. The method “keep_onscreen(final int which, final int ct, final int win_width)” does this in nearly the same way that “find_opp” did it where the first half of the list would transverse what remained using the function “opp_hpos” to find the opposite. This time we care about the “x” position. If the position of the current menu item puts it off the screen, then we have to get the “x” coordinate of the opposite one so that we can place them neatly side by side to keep them both in the viewable area, or if the opposite item has a long enough width to make it go off the other edge, then we need the calling node’s “x” position so that we can, again, place the menu items beside one another.
On feature common to menus on most, if not all operating systems, are menu items that can not be used because the user has to do something before that option is available to them. For example, “Notepad” in Microsoft Windows doesn’t allow users to cut or copy text until some has been selected first. In order to be able to allow programmers to quickly and neatly enable or disable menu items, each menu item is assigned a binary value where only a single digit is the number one. So a menu with cut, copy, paste and exit would have the numbers 1, 2, 4 and 8 respectively. Now, assuming there was something to paste, if a programmer wished to disable cut and copy when there was no text selected, they just need to say “set_enabled(4+8);” or “set_enabled(12);” to only keep menu items paste and exit functional. Programmers can create enumerators or constant variables for specific cases, like the cut – copy – paste example, to increase code legibility.

Now that everything looks the way, and interacts the way we want on both the user and programmer levels, we have to actually allow the menu items to be functional. In C++ the obvious solution would be function pointers. Each menu item would have a pointer to a method in the main program. Java, however, does not support function pointers. Instead we create an interface called “drips” that, when implemented, requires the methods “menu1()”, “menu2()”, “menu3()” … “menu30()”. When a new dripple is declared, it is handed the “this” pointer so that it can refer back to the methods required by the interface. But the compiler requires more context for the “this” pointer, and that, because the function “main()” is static, that the “this” pointer also be static. So a separate “drips” variable is made that is static and is initialized to the “this” pointer in the constructor of the program.
