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An Implementation of a Hierarchical Addressing of the 𝔸𝒏
∗  Lattice 

 

 

The 𝔸𝑛
∗  lattice is the image of ℤ(𝑛+1) projected onto a hyperplane that is orthogonal to 

the vector (1, 1, … , 1). As a result of this relationship, we reference elements in 𝔸𝑛
∗  by their 

pre-images from ℤ(𝑛+1). It is important to note that this projection creates an equivalence 

relation for the elements of ℝ(𝑛+1). 

 𝑥, 𝑦 ∈  ℝ(𝑛+1) 

𝑥 ~ 𝑦 ⇒ Φ(𝑥) =  Φ(𝑦) 

Where Φ is the projection from ℝ(𝑛+1) to a hyperplane orthogonal to (1, 1, …,1) 

With this equivalence in mind, it is acceptable and prudent to use a standard form for 

elements of ℤ(𝑛+1) which we will call a Lattice Address.  

An element of ℤ(𝑛+1) is a Lattice Address if: 

 No dimension of the element has a negative value 

 The value of at least one dimension is 0 

Conversion from an arbitrary element of ℤ(𝑛+1) to a lattice address is performed by the 

following procedure: 

𝑥 ∈ ℤ(𝑛+1), 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑛) 

𝑚 ≔ 𝑥0  

∀ 𝑥𝑖  ∈ 𝑥  

 If ( 𝑚 < 𝑥𝑖  )  

  𝑚 ∶= 𝑥𝑖 

∀ 𝑥𝑖  ∈ 𝑥  

  𝑥𝑖 ∶=  𝑥𝑖 − 𝑚 

 



As the 𝔸𝑛
∗  lattice lies in ℝ𝑛, we must use a procedure to convert a vector in ℝ𝑛 to an 

element of 𝔸𝑛
∗ . The paper “An isomorphism between the p-adic integers and a ring associated 

with a tiling of N-space by permutohedra” (Kitto, Vince, & Wilson; 1991) describes the 𝔸𝑛
∗  

lattice with the following definition: 

“𝔸𝑛
∗  is the lattice in ℝ𝑛 generated by the set of vertices { 𝑣0, … , 𝑣𝑛 } of a regular n-

simplex with barycenter at the origin.”  

 

Based off this definition, elements of 𝔸𝑛
∗  can be thought of as any linear combination 

with integer coefficients of the vectors { 𝑣0, … , 𝑣𝑛 } described above. At first these two 

definitions may appear different, but if the “regular n-simplex” is taken to be the standard n-

simplex, that is the simplex in ℝ(𝑛+1) with the (𝑛 + 1) vertices listed below, and ℝ𝑛 is taken as 

the 𝑛 -dimensional hyperplane orthogonal to (1, 1, …, 1), the two definitions are equivalent. 

Similarly, the equivalence relation stated above appears as linear dependence within this set of 

basis vectors. 

 

 With this second definition 
as a starting point, converting 
from a vector in ℝ𝑛 to a lattice 
address in 𝔸𝑛

∗  is an application of 
Gaussian elimination to find the 
coefficients of the linear 
combination for the given vector. 
As there will be (𝑛 + 1) basis 
vectors, each corresponding to a 
vertex of the simplex, with which 

to describe the 𝑛 elements of the given vector, one of the basis vectors can be excluded from 
the elimination arbitrarily. The 𝑛-tuple that results from the Gaussian elimination is converted 

to a vector in ℝ(𝑛+1) by adding a dimension, corresponding to the excluded basis vector, to the 
𝑛-tuple with the value of zero. The arbitrary exclusion of a basis vector is acceptable as the 



resulting (𝑛 + 1)-tuples are equivalent under the given relation. The (𝑛 + 1)-tuple that results 
from the elimination does not resolve to an element of 𝔸𝑛

∗  as the entries of this tuple are most 
likely not integers.  

 The mapping from ℝ𝑛 to 𝔸𝑛
∗  amounts to a partitioning of space. To this end we use the 

Voronoi Tessellation of the 𝔸𝑛
∗  lattice with the effect of assigning representative elements from 

𝔸𝑛
∗  to the resulting subsets of ℝ𝑛. In using this tessellation we also ensure that the points 

within the subset are closer, by the Euclidean metric, to their representative than to any other 
element of 𝔸𝑛

∗ . As the spacing of the 𝔸𝑛
∗  lattice is regular, assignment of a vector to the 

appropriate Voronoi cell representative can be accomplished by rounding the elements of the 
(𝑛 + 1)-tuple that resulted from the Gaussian elimination. The Voronoi cells generated by the 
elements of the lattice 𝔸𝑛

∗  are Permutohedra of order (𝑛 + 1). For example; 𝔸2
∗  produces 

hexagons, 𝔸3
∗  produces truncated octohedra.  

 

 At this moment we must take a moment to talk about Permutohedra before proceeding 
to the next section. A permutohedra is a (𝑛 + 1)-dimensional polytope whose vertices are 
created by permuting the elements of the (𝑛 + 1)-tuple (1, 2, … , 𝑛). The permutohedron of 
order (𝑛 + 1) lies entirely within the 𝑛-dimensional hyperplane defined by  

 {𝑣⃑ |𝑣0  +  𝑣1  +  𝑣(𝑛−1) =
(𝑛+1)∗(𝑛+2)

2
} 

This hyperplane is orthogonal to the vector (1, 1, …, 1). This hyperplane can be tiled by 
translated copies of the permutohedron. The barycenters of the permutohedra in this tiling are 
the elements of 𝔸𝑛

∗ . This tiling can be described through Aggregates. 

“Aggregates form a nested sequence of tessellations of 𝑛-space.” - Kitto et al. (1991) 

These structures are constructed inductively with the following process: 

 The 0 index Aggregate is a single permutohedron, this can be taken as centered about 
the origin 

 The (𝑘 + 1)𝑠𝑡 index Aggregate is produced by surrounding the 𝑘𝑡ℎ index Aggregate 

with 2(𝑛+1) − 2 translated copies of the 𝑘𝑡ℎ index Aggregate 



 

We will hereby refer to the index of an aggregate as Aggregate Level for the remainder 
of this paper. Furthermore, from Kitto et al. (1991), aggregates have the following properties: 

 For each 𝑘 = 0, 1, … 

o ℝ𝑛 is tiled by translated copies of the 𝑘𝑡ℎ  aggregate 

o The (𝑘 + 1)𝑠𝑡 aggregate is tiled by 2(𝑛+1) − 1 translated copies of the 
𝑘𝑡ℎ aggregate 

o Every element of 𝔸𝑛
∗  lies in some aggregate 

 Kitto et al. (1991) introduce the Canonical Address to reference an element of the 𝔸𝑛
∗  

lattice. A Canonical Address is a sequence of elements from ℤ2(𝑛+1)−1. Each digit of the address 

denotes which of the (2(𝑛+1) − 1) level (𝑘 − 1) aggregates, that make up the level 𝑘 

aggregate, the element of 𝔸𝑛
∗  lies in. The level (𝑘 − 1) aggregates are numbered as follows.  

 



 It should be noted that for level 1 Aggregates, the tile numbering lines up with the basis 
vectors of the 𝔸𝑛

∗  lattice; such that tiles numbered 20, 21, ..., 2𝑛 correspond to lattice addresses 
(1, 0, …, 0), (0, 1, …, 0), …,  (0, 0, …, 1) respectively. 

 Kitto et al. provide conversions between lattice addresses and canonical addresses; 
these procedures depend on a (𝑛 + 1) × (𝑛 + 1) circulant matrix 𝑩. 

𝑩 = 

[
 
 
 
 

2 0 ⋯ 0 −1
−1 2 ⋯ 0 0
0 −1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ −1 2 ]

 
 
 
 

 

 This matrix takes a lattice address from the center of a level 𝑘 aggregate to the center of 

a level (𝑘 + 1) aggregate. Similarly, 𝑩−𝟏 takes a lattice address from the center of a level 𝑘 
aggregate to the center of a level (𝑘 − 1) aggregate. Converting from a canonical address to a 
lattice address uses the following procedure. Note that the examples given are for 𝔸3

∗ . 

 



 The conversion from lattice address to canonical address is more complicated; the 
procedure is shown below. 

 

 The possible values of a digit in a canonical address range from 0 to 2(𝑛+1) − 1, which 
can be represented with (𝑛 + 1) bits. In the second example included at the end of this paper, 
canonical addresses are implemented as bit-fields; access and mutation of the data is handled 
with bit shifting and masking.  

 With these definitions and behaviors in place, we can discuss the main topic of this 
paper; a space partitioning tree with which to store the elements of 𝔸𝑛

∗ . With the relationship 
between canonical addresses and aggregates, a hierarchical structure is apparent. For the next 
section we will use the term Tile to refer to a leaf node of this tree which corresponds to a 
single element of 𝔸𝑛

∗ ; equivalently, a tile refers to a level 0 aggregate. It is important to note 
that tile and leaf node are not equivalent definitions, as nodes of the tree which correspond to 
aggregates whose level is greater than zero may have no children, and therefore meet the 
definition of leaf node. All tiles are leaf nodes, but not all leaf nodes are tiles. A major point to 
consider is that the hierarchical structure is built by aggregation instead of subdivision; this 
implies that branches of this tree cannot grow past a tile, increasing the depth of the tree 
requires that another level of the tree be added at the root. 



 While much of the behavior of the tree is context dependent, several pieces of 
information have appeared to be universally useful. Each node of the tree should store the 
following members; aggregate level and canonical address. Nodes that are not tiles will also 

store an array of 2(𝑛+1) − 1 references to child nodes. For these non-tile nodes, the canonical 
address is truncated by filling in all digits less significant than the node’s aggregate level with 
zeros. This is important as the canonical address of a non-tile node references the center of the 
corresponding aggregate. For an example, see the nearest neighbor search in the following 
section. 

 Two distinct implementations of this system have been produced, both of which will be 
discussed in detail. The first implementation was produced as an optimization to the k Nearest 
Neighbors algorithm, hereby referred to as kNN, for a research project conducted by Children’s 
Hospital Los Angeles. The input data were sets of cell nuclei locations in three dimensions, 
having as many as 300,000 points each.  

The basic design of the optimization is a limitation of the search space for candidate 
neighbors. The important design considerations for this implementation consists of two main 
parts, the need for an efficient nearest neighbor search and pre-existing sparse data. Creating 
an efficient nearest neighbor search was accomplished by selecting a representative element of 
𝔸3

∗  for each data point so as to store the data points in a 15-ary tree by canonical address. This 
allowed for entire branches to be discarded when searching for neighbors. Insertion of data 
points into the tree structure was lazily evaluated, which avoided the creation of unnecessary 
nodes. The implementations of both the search and insertion have been included at the end of 
this section. 

Designing with these two considerations in mind, the runtime for a data set of 65,000+ 
points was 2 minutes as opposed to the 16+ hours of the naïve algorithm. Similarly, a dataset of 
247,000+ points ran in 15 minutes; the naïve implementation ran for two weeks before the 
process was aborted.  

 



 

This code above is the implementation of the nearest neighbor search. 

DataPointEntry is a struct that holds; a Euclidean Vector from ℝ3, a Lattice 
Address for 𝔸3

∗ , and a matching Canonical Address. 

The function pointed to by callback calculates the distance between operand 
data point and the ‘parked’ DataPointEntry, and updates the list of closest 
neighbors if necessary.  



 

Above is the implementation of the lazily evaluated tree insertion, this function 
is called on every DataPointEntry that was created from Preprocessing. 

 

 

Runtimes for a set of 65,000 points and a set of 247,000 points. Preprocessing 
creates a DataPointEntry for each data point, in doing so it calculates the 
canonical addresses and prints the length of the longest canonical address, 
which is necessary as we must know the tree depth before insertion. 



The second implementation of this system was for a forest fire propagation simulation 
that was created for the Microsoft Alpha Game Jam 2015. This simulation used hexagonal 
cellular automata to store the conditions in small areas of the forest.  As each cell of the 
simulation is a hexagon, we use the 𝔸2

∗  lattice to store and access these hexagonal areas. The 
design considerations for this system included; lazy branch creation, saving of tile state, and 
branch destruction. These considerations are all related in that we want to avoid creating or 
keeping unnecessary nodes or tiles, but also be able to save the state of a tile. This is important 
so that we do not have tiles that exhaust their fuel and burn out, only to be reignited later. 
Simply put, tiles that have burned should not burn again. As a side note; when ignited, a tile 
retrieves references to its neighbors; when extinguished, these references are removed.  

The implementation of lazy branch creation here is different from the lazy data insertion 
of the previous example; in this system a branch is created with full length, that is to say that it 
terminates with a tile. Retrieving references to tiles is handled through a method to be called 
on the root node, the important parameter to which is the canonical address of the tile to be 
returned. As the tree is traversed to access the tile requested, nodes along the path are created 
if they do not yet already exist.  

Tiles can have the following states; untouched, on fire, burned, wetted, or 
incombustible. These states comprise a bit-field, stored in a single byte. Non-tile nodes have an 
array of these bit-fields, one for each child. When a tile changes state; either from warming by 
adjacent fires, exhausting their fuel supply, or by external events; the tile notifies its parent 
who then records the tile’s state. As a secondary action, the parent node compares the state of 
all its children. If the state of each child is identical, the node then notifies its parent, continuing 
up the branch as necessary. The utility of this process will become apparent in the next section. 

A tile need no longer exist if it is not actively on fire and it is not being referenced by a 
tile that is actively on fire. If neither of these conditions are met, the tile is available to be freed 
and it does so by notifying its parent node. The parent node then removes the reference for the 
tile from its collection of children, prompting the child to be garbage collected. The parent node 
then checks if it has a reference to any living child, and checks if its children have 
heterogeneous state. If neither of these conditions are met, the node itself is unnecessary and 
notifies its parent that it should be removed. With this process, entire branches of the tree can 
be removed if the area represented by the branch is not actively on fire and has homogenous 
state.  



 

Two images of the original fire simulation. Red areas are on fire, gray areas have 
been burned. An area of the terrain’s texture is changed when the tile for that 
area changes state. 

 

This is a visualization of the tree structure. Blue cubes are interior nodes. Red 
circles are tiles. Each tile has fuel, elevation, and temperature. If on fire, a tile 
will heat its neighbors based on the following criteria; the tiles temperature, 
distance to neighbor, elevation difference, and wind direction. 



 

Another image of the visualizer. Note the lack of low level branches in the center 
of the image. The nodes and tiles for this area have been freed due to the area’s 
homogeneous state. 

 

While not directly related to the addressing scheme, the above image shows an 
improvement to the accuracy of the model. In the image on the left, the 
distances between tiles are always calculated from the tile center. In the image 
on the right, each tile is assigned a random vector from within the unit circle 
which is included in the distance calculation.  


