

Music Server with Group Listening

Ben Basten

Advisor: Andy Poe

Before COVID and when large gatherings were still allowed, attending concerts

was one of my favorite pastimes. There is something magical about a large group

all gathering in the same place with the common goal of having fun and enjoying

the artistic craft of whoever is on stage. Now that social distancing and

quarantining is in full effect, I would like a way to be able to connect with my

friends and family by simultaneously streaming music from afar.

The purpose of this music server is to enable users to listen to music in real-time

with other users of the server, so it will be designed with listening “rooms” that

clients can join. Each room will have an independent queue of music playing. The

rooms will be a collaborative format, so everyone has equal rights to play, pause,

skip, and add to play queue.

There will be an API on the backend that will administer the creation of these

rooms and streams to my personal local collection of music. I will most likely be

using the Spring Boot framework, with Java WebSockets or MulticastSockets

handling the streaming and room creation. The API will be able recursively index

the music library. Through the various public endpoints, clients will be able to see

a listing of the music collection and use these listings to add to the play queue

within their room. To make this API more robust, I will be implementing Spock

unit and integration tests along the way.

For the front-end, I will be creating a simple React.js interface. I would like to

spend most of my development time building the API, so the styling will be simple

yet consistent. The interface will provide users the option to create or join a room

on the landing page. Upon successfully creating or joining a room, there will be

asynchronous calls within the room to perform actions such as playing, pausing,

skipping to the next song, or adding to queue.

Rubric
80pts: Backend

5: Unit Testing on controllers using Spock

2: File organization consistent with Spring Boot standards

10: Backend can index .mp3 and .ogg files that are available in a root

directory

3: Backend can recursively index .mp3 and .ogg files that are nested (ex.

[artist_name] > [album] > song.mp3)

8: Endpoint to retrieve listing of available song titles

5: Endpoint to provide current song information for a room

10: Users can create a room and generate a room code

5: Users can join a room by room code

15: A room can play a single predetermined song to multiple clients

(multicasting)

5: A room can play a predetermined playlist of music

10: Clients within the room can play and pause

5: Clients within the room can skip to the next song

5: Clients within the room can add to queue for that specific room

2: Count of number of clients within the room

80pts: Frontend

5: Create/join room landing page

15: Successfully can create or join a room with API calls

5: Consistent look/feel

10: User can play/pause

5: User can skip

3: User can see a listing of available music to add to queue

2: User can add to queue

10: Audio plays on the client-side

15: Audio stream is the synchronized for multiple clients

5: Display current track information

5: Queue visible in UI

Total: 160pts

Grading Scale:
A 130-160

B 110-129

C 95-109

D 80-94

F < 90

