Bert Maki

CS480-01-05F Senior Project

 The decision to incorporate XML into my Senior Project was almost an easy one. I'd known for a couple years that I should learn about this new technology. Extensible Markup Language was going to be The Next Big Thing, or one of them anyway. An opportunity or reason to actually use it for something useful, however, never seemed to come about until it was time to dream up a project for CS480. Since I didn't know much about XML, I wasn't sure I could learn enough about this language to do something substantial with it in time to satisfy the course requirements, and therefore graduate in December like I'd hoped to. Ultimately I believe it turned out to be a wise choice, as I've learned a lot not only about XML and several of its supporting technologies, but Java (especially the javax.swing package) as well.

Portable code, portable data

 Many software developers appreciate the fact that their Java, ANSI/ISO C++, or other platform-independent code will run on a wide variety of operating systems, with little or no porting required. If a program they create is well written and essential to an organization, it might be maintained and used for many years – decades in some cases. The data such programs generate and manipulate may very well be stored and used (or at least archived) for just as long. Such information is often more important to an individual or organization than the software that helped to create and format it in the first place. It may be shared amongst a wide variety of devices such as enterprise servers, desktop workstations, personal digital assistants, and cell phones. The list of hardware devices (with their unique and often proprietary software) goes on, and will continue to grow with the passage to time. Raw data usually needs some sort of organization, formatting, and context to be considered information in the truest sense of the word. To keep it all perfectly consistent and accurate as it goes from platform to platform, maybe over the course of many years, is hardly trivial. Standard Generalized Markup Language (SGML) was a major step in the right direction, and has been an ISO standard since 1986. Unfortunately it's extremely complex, and is hardly seen outside of the U.S. military and aerospace industry.

 XML 1.0, a descendant of SGML, became a World Wide Web Consortium (W3C) Recommendation in February 1998. It retains most of the functionality of SGML without all the extras that hardly anybody wanted or needed. Since an XML document is simply text, any text editor can be used to read and write to it. As long as the document adheres to the rules of the grammar, it is considered well-formed and can be read by any XML parser or processor. People can read the information in these documents too of course, and even if you aren't familiar with Extensible Markup Language, you can often make sense of the data.

 If an XML document references a sort of dictionary describing the data – either a Document Type Definition (DTD) or some form of XML schema – humans and machines can verify the validity of the document. Mostly this means the elements and attributes are spelled correctly, are in the right order, and contain the type of data they are supposed to as defined by the author of the DTD or schema.

 Unlike HTML (an SGML application) with its predefined set of tags, the Extensible Markup Language is just that – extensible. The language can be extended and adapted as needed by each developer. You create your own set of elements and their attributes, and often a schema or DTD to go along with it. Many organizations and industries have an agreed-upon set of tags for its members to use, known as an XML application.

 There is another fundamental difference between HTML and XML: the former only cares about the presentation of the information, while the latter is concerned solely with structure and semantics. XML isn't concerned with font size, underlining, color, or anything of that nature. When presentation formatting is needed, a powerful solution is to use an Extensible Stylesheet Language application such as XSL Transformations (XSLT) or XSL Formatting Objects (XSL-FO). Another option, which is often easier yet adequate, is the popular CSS, or Cascading Style Sheets.

Java

 Coding my project in Java seemed like a wise choice since it's a highly portable language. Dr. Randy Appleton let me borrow his copy of Java and XML, by Brett McLaughlin, and after reading a few chapters, my decision to go with Java was reaffirmed. Sun Microsystems is a major supporter of XML, and JDK 1.5 comes with several packages for working with it, as well as several related technologies. I thought that I might want my project to have a graphical user interface, which can be done in Java while still keeping the program platform-independent.

The Address Book

 Once I knew which programming technologies I wanted to learn about and use for my senior project, it was time to figure out what to do with them. Building something that I truly had an interest in seemed like the logical thing to do, since I knew it would help to motivate me during both the research and development phases of this undertaking. Likely the best thing to do was to make something that I could actually use, some software that I wanted or needed. Eventually I decided upon an address book, because I wasn't satisfied with any I had used so far.

 Email clients usually have a built-in address book, and they're often more than adequate. But these programs, like most software applications, eventually become obsolete. I'm confident that anybody who has had an address book for more than a few years has had more than one, and had to endure the tedium of re-entering all of their contacts' information. Sticking with one email client for as long as possible just to avoid this daunting task can be inconvenient, and more seriously – a potential weakness in a computer's security. The import/export functions for transforming one client's address book to another's usually result in some data loss or corruption, and just plain suck.

 Throughout a person's life, they'll need to keep track of the addresses, phone numbers, and other important information about friends, family, and other social and professional contacts. I think this kind of information deserves a stand-alone dedicated program that has a good chance of providing many years of service, on any established computing platform. More importantly, it ought to be stored in a non-proprietary format that will endure the passage of decades if need be, capable of outlasting any software designed to manage it. The data and its structure should be so self-descriptive that its meaning is easily inferred by any literate person using basic software (such as a text editor), and so well-organized and unambiguous that software for manipulating the data is widely and freely available. I believe XML is more capable than any other technology to provide this kind of robust structure.

Functionality and usage

 The Address Book program provides the core functionality that just about any data storage application should have – adding, modifying, and removing items:

· To add a contact, click the Add Contact button. A dialog box will appear with text boxes for the contact's name, address, email address, and phone numbers.

· To delete a contact, select the contact you wish to delete from the list, and click the Delete Contact button.

· If an existing contact's information needs to be changed for any reason, select their name in the list. Their information will appear in the text boxes to the right. Edit the fields as necessary and click the Update Contact button.

 When adding a new contact, the First Name and Last Name fields must contain at least one letter. If they are empty, and the Save button is clicked, the only action performed by the application is moving the cursor to the offending empty name field. After a first and last name are entered, the new contact can be saved. All other fields are optional.

 When updating an existing contact, any of the information can be changed or removed, with the stipulation that the First Name and Last Name fields cannot be left blank. If they are, the cursor will move to the empty name field, and no changes will be made when the Update Contact button is clicked. All other fields are optional.

 In addition to these basic functions, the Address Book also allows the user to synchronize the data stored in its XML file with another such file accessible by the computer's file system. This comes in handy when the application is used on two difference computers – perhaps a laptop and a desktop workstation. Click the Synch Files button and select a file when the file chooser dialog box appears. The two files will then be examined for any inconsistent information.

 The files will be compared in two phases. The first phase identifies any contacts not appearing in both files. A small message box will appear, asking the user if they want to keep the contact or remove it. The second phase looks for discrepancies in information belonging to contacts that appear in both files. For example, if a person has one email address in one of the files, and a different email address in the other file, the user is prompted to choose which one they'd like to keep.

 In order for file synchronization to be fully functional, the user should of course have read and write privileges for the file they select. If they only have read privileges, their local XML file will be updated, but obviously the selected file will not be. Should the user have neither read nor write privileges for the selected file, no changes to either file are made. After the file synchronization process is finished, the user will be notified of the outcome.

Code Overview

AddressBook.java provides the core logic for the program. It handles the reading and writing of data from and to address-book.xml, and will create the file if it doesn't already exist. As contact information is updated by the user, the XML file gets modified. In general, AddressBook.java provides methods for

· parsing an XML file and creating a Document Object Model (DOM) Document

· parsing a DOM Document and loading data into a tree data structure

· modifying the nodes (Contact objects) in a tree

· creating a DOM Document from a tree

· creating an XML file from a DOM Document

and several helper methods for user interface classes. For the sake of modularity, it does not contain a GUI or command line interface. It is often better to put the user interface code in separate files.

 The Document Object Model is a platform-neutral set of abstract interfaces for reading and modifying XML documents. It's a friendly and familiar paradigm to most developers because it defines an API for treating XML documents as tree data structures, where each element is represented as a node-like object in the tree. With very little code (at least in Java), a DOM instance can then be parsed, and data from each element can be assigned to instance variables in a developer's own Java class. In turn, these objects can then be stored in data structures of the developer's choosing.

 The contact elements in address-book.xml contain child elements such as first_name, last_name, email_addr, etc., and correspond to instance variables in Contact.java of the same name. The <contact> elements in the XML file correspond to Contact objects in Java. The Contact objects are stored in a TreeSet (found in the java.util package), which provides efficient access and keeps them sorted.

 A TreeSet sorts its elements (Contacts in this case) in ascending order according to the natural order of the elements. In this case, the natural order of Contact objects is a concatenation of the last name, first name, and middle name. This string serves as the “key” for the class, and is returned by the getKey method. As required by the TreeSet class, the Contact class implements Comparable and has a compareTo method (which uses getKey). Since it has compareTo, I chose to override the equals and hashCode methods from the Object class for the sake of consistency.

 In the early stages of the project's development, I hadn't decided whether to write a command line interface or a GUI for user interaction. Soon after getting the basics of parsing and writing XML files figured out, I remembered that Java had something fairly new called Swing, and that it had to do with graphical user interfaces. At the beginning of the semester I had purchased a new book I thought would come in handy for CS326 Object Oriented Design, Head First Java, by Kathy Sierra and Bert Bates. Fortunately it has two chapters on GUI and Swing, and after skimming those I decided it would be cool to make a GUI for the Address Book using the javax.swing package.

 And so AddressBookGUI.java was born. And it grew. It was actually a bit scary! I had forgotten how big GUI code can get – even in a very high-level language – while seemingly accomplishing very little. I tried to use good OOD, which I thought would be really easy with GUI code. But all attempts at cleaning things up resulted in frustration. The Sun Microsystems site has a lot of good GUI example code, but I couldn't find anything that addressed the issues I was having. So I decided to just get it working and improve it sometime later.

My favorite parts of the project

 One of the coolest features of the Address Book, in my opinion, is the file synchronization. While there may not be some really slick algorithm under the hood, it's still one of the most personally satisfying functions of the program. First of all, it delivers on one of the promises so often made in the world of computing – it quickly completes what would otherwise be a long, tedious task so that the user doesn't have to. Secondly, despite the fact that there's a lot of code to make it all happen in several files, there's pretty good work division. While AddressBookGUI.java contains some of the logic, it is the part most dependent on GUI events. AddressBook.java still contains logic that would not need to be changed were I to create a command line interface for it in the future. Finally, I put a lot of effort into making it user-friendly. I used a “convenience implementation of FileFilter” that Sun provides called ExampleFileFilter.java to show only XML files in the file chooser dialog when a user is selecting a file for synchronization. The file permissions on the file they select are checked, and the program takes slightly different courses of action depending on the permissions – rather than just crashing. The user is notified of the results in the end.

 Java comes with a lot of packages for working with XML and several related technologies. I have to say I was pleasantly surprised – and very impressed – at how easy (relative to my expectations) it was to parse and create XML files. There was certainly some learning required on my part, but Sun and several contributers to Java – especially the famous Apache Software Foundation – have tackled most of the low-level work. For anyone needing to manipulate XML files with C++ or Java, Apache's Xerces and Xalan are your friends. Once part of the Apache XML Project, they are now separate top-level projects. Xerces and Xalan work behind the scenes in packages such as javax.xml.parsers, javax.xml.transform, and org.w3c.dom, but need to be downloaded & installed for use with C++.

 Something less glamorous yet indispensable is the java.util package and its collection of, well, collections. I had never used any classes in Java's collections framework before working on this project. I found the TreeSet class to be extremely convenient (knowing first-hand how challenging it is to “grow” your own), and to populate a javax.swing.JList you are required to use some type of array, and a Vector seemed to be the most elegant choice. I had heard about Vectors many times before, and finally the occasion had arrived to use this class myself. Again, while these aren't very exotic, even as a novice programmer I can already see how the collections classes could be everyday workhorses for a full-time Java developer. And now I have some practical experience using them.

Problems I've encountered

 Few people know this, but Winston Churchill was a part-time Java programmer on the side. When he said, “It is a riddle wrapped in a mystery inside an enigma”, he was not talking about Russia, but rather the javax.swing package and its layout managers. Though they may have been very well thought out and implemented, I think I'll reserve judgment until I have some more experience with Swing. One of its supposed benefits is better cross-platform consistency in appearance. However, when I run it on my Linux box, parts of the text fields' labels in the main frame get cut off. Resizing the frame/window with the mouse so that it's wider fixes it, but the problem never occurs in Windows, so... so much for consistency across operating systems. So far I feel that I've experienced only the tedium and frustration of Swing and none of its rumored many advantages.

 Strange as it may seem, I had a heck of a time achieving decent indentation in the address-book.xml file. JDK 1.5.0_05 javax.xml.transform uses Xalan-j2 2.6.0 which seems to me to have a bug that refuses to indent code properly in the XML files it creates. While this doesn't affect the program's functionality, it makes the XML code a bit harder on the eyes. The file myStyle.xsl provides a temporary workaround. The code therein is from

http://www.dpawson.co.uk/xsl/sect2/pretty.htm

and the original posters appear to be Joshua Allen and Eric van der Vlist, with improvements made by Nikolai Grigoriev and John Mongan. Developers are supposed to be able to control indentation through the setOutputProperty method of the javax.xml.transform.Transformer class. Based on the research I've done, indentation appears to be “broken” in version 1.5 of the JDK, even though it worked in prior versions. Whether it was ever formally a feature of that package is unclear to me.

 The File class methods canRead and canWrite don't work in Windows. I needed this kind of functionality in one way or another for file synchronization, so in my AddressBook.java file I wrote the method getReadWriteStatus as a workaround. It will return 0 if the application can read from and write to the file, 1 if it can read from but not write to the file, or 2 if the program cannot even read the file. In a try/catch I try to open the file for reading or writing, and the

catch part will return a 1 or 2 rather than, say, printing a stack trace.

 The JTextField getText method doesn't seem to work quite right when checking for a blank text field. It is supposed to return an empty string (rather than null) when the field is empty, but using if (getText() == "") to check for this doesn't work. Fortunately after some experimentation I found that if (tf2[0].getText().trim().length() == 0) does work.

 Probably the strangest problem I encountered was buggy behavior of a for loop inside an if statement which was nested inside two enhanced for loops in my AddressBook.java SynchListener class. Neither a for nor while loop would work properly, and as a matter of fact, I got different behavior from each of them! I realize that I'm still a novice programmer, but I'm pretty sure it wasn't incompetence on my part. I put a lot of effort into debugging it, even letting it go for a day and coming back to it later. Eventually I used a series of if statements, and in the end my original intentions may not have produced significantly less code.

Improvements I could make

 The list of things I could do to better the Address Book is the stuff nerds' dreams are made of. Deflating the AddressBook.java file by letting some of that GUI code out would be a start. There's got to be a better way to use Swing than having inner classes nested three or more deep. Some code reuse would be nice; there's too much obvious “copy & paste” going on. Instead of just putting the cursor back in an erroneously empty First Name or Last Name text field, I'd like to pop up a message box to tell the user that those fields cannot be left blank. And I can easily do that by writing yet more message box code and wearing out the Copy and Paste buttons, but I believe with a little more research I'll discover a more elegant solution. I need more experience writing Java GUI code in general.

 The contacts will need to hold more data such as multiple email addresses, place of employment & work address, at least one web site URL, a Notes text area for extra flexibility, and probably a few other things. Having a button next to each email address field that opens the default email client with the To: field automatically populated would be nice, and is possibly easy to do.

 I'd like to create a Web version of the Address Book, possibly in Perl or PHP, that can use a copy of the same address-book.xml file that the Java version uses. It should be password-protected of course, and allow the user to upload and download an XML file for synchronization of contact information. It would be a good way to get some more XSLT experience, because there would certainly be opportunities for converting XML to XHTML. And having access to my Address Book anywhere there's an Internet connection may sometimes be very handy.

Thoughts on the Senior Project in general

 The lack of regular deadlines and course structure certainly forces one to exercise a certain degree of self-discipline. It's easy to let procrastination creep in, and because of this I can see how several students may need to take more than one try at CS480.

 It's been great to have the opportunity to do independent research and work towards learning new skills and honing existing ones, while getting a few computer science credits in the process. The whole experience of learning the basics of XML and then using that knowledge to create major portions of a working program has been really cool. Prominent organizations such as Sun Microsystems, the Apache Software Foundation, and many others take the XML technologies very seriously, so I have no doubt that this learning experience will pay off in more ways that one. Time spent learning new Java coding skills certainly doesn't hurt. In addition, the Address Book will actually be very useful (at least to me) for probably many years – both as a practical application and a platform for learning new technologies and skills.

