
Senior Project
By Charles Mogan

Intro

My goal with this project was to make a top down shooter in
which the player traverses a maze-like environment and defeat
enemies. The environment in the game consists of a series of
random rooms filled with various enemies that the player must
defeat. At the end of each floor there is a boss that the player
must defeat before they can advance to the next floor. Through
this project I explored the basics of the unity game engine, c#
and procedural generation, all subjects I had no experience with
at all up until now. I decided to focus on mechanics and ignore
things like textures, animations, and audio. This is because I
can’t make these things myself and would likely be handled by
other people on any type of commercial project.

I decided to use Unity for my project because it is widely
considered to be the easiest to use of the “real” game engines.
Once I decided on the engine my choices for programing language
were narrowed to c# and javascript, because those are the two
languages that Unity supports. I decided to use C# because that
is what most of the tutorials I found were written in, and
because my limited experience with javascript was not very
positive.

The hardest part of the project was just forcing myself to
work on it. Working on a project with abstract far off deadlines
and no oversight is always difficult, but this project was much
larger than others I have worked on so the temptation to fall
into the “andy class trap” was everpresent.

Another difficulty, somewhat related to the first, was
getting oriented with c# and the unity environment. At the

beginning there were not any short term goals I could achieve in
a coding session because I didn’t have a good idea of where I
was going or how to use the development environment. Once I knew
enough that I was able to break things up into small chunks then
itemize daily tasks from those chunks things went much more
smoothly.

Movement

I tried several different basic movement systems. The first
was applying a force on the player through Unity’s physics
system. This resulted in the player accelerating when a button
was pressed, which gave the player a sort of floaty feel. This
was acceptable for the player, but had odd results when applied
to the enemies. An enemy that was supposed to go towards a
player would orbit the player instead. The second movement
system I tried was directly moving the player by setting their
position each frame based on player input. This meant that the
player now moved at a constant velocity. Enemies also move
towards the player directly instead of orbiting. The major
problem with this movement system is that it breaks anything
that relies on measuring the character's velocity. This is
because the character does not move so much as teleport very
small distances, so their measured velocity is always 0.

The biggest remaining problem with the movement system in
my game is that I'm using the collision system to stop the
player and enemy from phasing through walls. This works fine,
but is jittery and not very realistic. If I wanted to make the
movement more legitimate I would switch to Unity’s built in
movement system. I didn’t use it for my project because it would
have required dynamically creating and modifying and combining
navigation meshes as blocks in the map are created and
destroyed. In the future however this would allow me to make
somewhat more advanced enemy behaviors.

Shooting System

Creating the bullets that the player fires was not very
difficult. I simply instantiate a basic sphere gameobject at the
player's position with a tiny script for dealing damage attached
to it, and give it an initial velocity.

Physically The laser’s physical structure is just made of a
basic unity cylinder object, elongated, rotated and made
translucent. In order to make using the laser risker the player
is paralyzed for a short time when they use it. In order to do
this I use the unity API’s StartCoroutine() function to disable
the players movement script while the laser charges and fires.
StartCoroutine() does not start up a new thread, which is is
important because game objects can not be instantiated outside
of the main thread. Projectiles do damage on contact, so to have
the laser do consistent damage over time it is actually composed
of 13 sub-lasers that are instantiated over the second the laser
is firing.

Level Generation

The level generation starts by generating the outline of a
fixed size square room. This is the room that the player starts
in. it is the only one without enemies and other rooms and will
tend to be near the center of the worldspace.

After the first room the outer walls of all other rooms are
proposed so each subsequent room shares a wall random with a
random existing room. The room’s other dimension is a random
size so that there is some more diversity in the rooms being
generated.

The proposed room has its location checked against the
location of all existing rooms, if a collision is found a new
random room is proposed, if no collisions are found the outer
walls of that room are generated. If a collision is detected
then a new room is proposed.

Once the desired number of rooms are generated the rooms
are filled in parallel using a cellular automata algorithm that
seeds the room with walls and then clumps them together. I tried
many different rule sets for the cellular automata to see what
types of interesting results I could get. I decided to keep the
rooms relatively open because enemies do not have pathing. While

the ruleset I decided on works well for the 50X50 to 100X100
rooms that are currently in the game, adjustments to the ruleset
would be needed for smaller or larger rooms. If I continue this
project one change I plan on making is adding more room types
with different sizes, classes, and rulesets.

After the rooms are filled, doors are added between the
rooms. Doors are placed at the center of the contact points
between any two rooms. A room can contact multiple other rooms
on the same side, a door is made for each. After that the area
around each door is cleared of walls and the trigger to activate
the doors is added.

 I originally wanted the wall segments to be composed of
many more, much smaller cubes. This would have given the rooms a
much more organic look. It turns out that even with culling, and
the game objects just being cubes there is a limit to how many
game objects can exist and have the game still run smoothly.
Using the script

for(int x = 0; x < howManyCubes; x++){
for(int z = 0; z < howManyCubes; z++){
GameObject myCube = Instantiate(cube, new Vector3(x,-20,z),

Quaternion.identity);

}

}

From this I was able to determine that performance really
started to suffer between 40k and 250k cubes depending on
settings and the system the game is running on. Because of this
the plan for 5000X5000 cube rooms was scrapped in favor of
blocky 100X100 rooms.

Things I would/should have done differently

Parallelizing the level generation ended up being a giant
pain. At first it seemed it would be easy, I found out that C#
had a Parallel class that had a Parallel.For() method. The first
problem I encountered was that Unity’s API is not thread safe.
This was a real problem because the longest part of the level
generation was instantiating the unity game objects that made up
the level, which ended up having to be done on a single thread.
The other issue I encountered was that the Parallel class was
introduced in .NET 4.0, while Unity uses .NET 2.0 by default. In
order to switch the newer version of the framework I had to

download a new version of Unity and switch to the experimental
.NET 4.6 runtime.

Parallelizing the cellular automata portion of the level
generation yielded very little benefits, so little that I
couldn't measure it normally. The cellular automata normally
runs for 6 generations per room. To demonstrate that the
parallelization was working at all I increased that to 500
generations and tested with and without parallelization. Even
running it for 500 generations the time to produce the level
was only reduced from 5.5 to 2.5 seconds (this was on a quad
core processor without multithreading).

 Rooms also must be seeded individually now, because random
number generator is also not thread safe. Switching to the
experimental runtime also made the development environment far
less stable than it previously was, making the decision to
parallelize even less sensible. Also, because parallelization
was one of the very last problems I worked on I didn’t end up
using the .NET 4.6 features anywhere else.

There were other mistakes that arose from a lack of design
foresight. One of the things I overlooked in my original plans
was that the doors were going to be the triggers for the room
locking down and the enemies spawning. The problem with this
plan is that the player character could be inside the door when
it spawns, or potentially even in the wrong room. This didn’t
end up being a big problem, but led to code that was less clean
than it could have otherwise been.

Grade

While the implementation may not have turned out as clean
as I would like, I did manage to accomplish almost everything I
set out to do. I never implemented a teleporting enemy mostly

because there are many edge cases to deal with like enemies
teleporting inside of other enemies, or inside of walls or
outside of the map. The other feature I put points on but did
not implement was having the character’s laser be stopped by
walls. I had intended to implement this by using the ray casting
system in unity to find the distance to the nearest wall and
setting the laser’s length to that distance. However having a
ray collide with some objects (walls) but not others (enemies)
required using the Unity's layer masking system, which ended up
being too confusing to be worth the three points.

I appear to have made an error in my proposals rubric by stating
the program was out of 100 points when the points actually added
up to 105.

Grade

Player Behavior 18/21

UI/Menus

6/6

Map Generation 50/50

Pickup System 10/10

Enemies 15/18

Total 99/105

