Senior Project Final Report

BatChat - Mobile Communications Application
2014
Cody Martin

The senior project | chose to develop was a mobile application on the very
popular Android platform. This application allows users to connect and communicate
with one another over the open and standardized XMPP communications protocol. This
is a cross-platform network protocol that allows anybody to adopt and build applications
on top of. It has already been adopted by many large organizations and products. Both
Microsoft and Google both use it for interoperating between different federated chat

networks, which makes it the perfect chat medium to bring to mobile devices.

| chose to design and develop this project in collaboration with Adam Jacques.
We felt that working as a team would help us to develop skills that could be later used in
the professional world. In order to get the most out of the project we wanted to make it
as close to a professional work environment as possible. We accomplished this by
partaking in code reviews for all code changes to the SVN repository, and using an
issue management system to track bugs and to keep our progress. In doing so we were

able to prove that we could work as a real-world development team.

Working in collaboration with Adam was one of the largest benefits in developing
this project for me. The aspect of making it as real world as possible is something that |
did not experience much throughout my undergraduate curriculum and | find it to be
very important. | believe that it will help me immensely when | start my career after
graduation. The collaboration tools we used were very effective. They made it easy to
open bugs/issues against one another’s code, review one another’s code before it was
committed to the codebase, and to keep track of the progress we were making both as

a team and as individuals. The tool we used to track our progress was a web based

project management application called Redmine. | added all of the tasks | laid out in the
proposal to Redmine. | could then see what | had left to complete, | was also easily able
to see anything that had bugs that needed to be fixed. Using Redmine really helped to
keep me on track and show me what I still needed to complete. It was a good way to
stay organized and always be able to have a task to work on. Before either one of us
pushed any code to the main SVN repository, we first submitted all of our code changes
to a web-page tool called ReviewBoard. We then requested that the other person would
inspect the code changes to catch any clearly broken code or other code style issues.
This process step wasn’t about actually having the reviewer try to run the code and
ensure that it worked, but it was supposed to catch grotesque or other obvious issues to
drive a high-quality codebase. We also used this process to question design decisions
the other person may be making at this time. This is inline with processes that many
large and serious software engineering companies require and served as a practice run

for business-oriented application development.

We chose to implement this project because we have used different XMPP
clients made for the Android platform and they provided a poor user experience. They
had distasteful user interfaces and did not support some features that the XMPP
protocol allows and makes easy to implement. Because of the poorly implemented
XMPP clients currently in the market, we thought we could create and provide a better

product to the currently underserved customers.

Choosing to implement this project on the Android platform allowed me to
experience developing an application in an unfamiliar environment. Mobile application
development is an important skill in today’s world with so many new companies
targeting Android, so this project gave me the experience | needed to feel comfortable

working on a serious Android project.

Being a two-person project, we decided to divide it into two separate parts that
could be easily worked on independently. Then we could later merge the two parts
when we reached the point of being compatible. | worked on the user interface portion
while Adam worked on the networking stack. Since the user interface depended on the
network system in a few places, Adam and | both designed an abstract interface that |
could code against until he got around to implementing them. Doing this made it
possible for us to work at our own pace and be able to work without one another, as we

had different schedules.

The first thing | did in the project was create a few basic user interface layouts for
the login and home screen. | created the original layouts using Eclipse’s built in user
interface editor. To use this, | dragged and dropped items to their desired location and
then selected different options such as the layout_gravity, size, and ID. Once | started
creating more layouts, | found that writing the XML by hand seemed to be a lot more
efficient and | was able to get better looking results because | was not constrained by
the expectations of the editors. Not only was | able to make the user interface look
better with this process, but | often times ran into problems using Eclipse’s built in Ul
editor. The Eclipse plugins would get into a corrupted state and fail to render anything
causing my entire process to be blocked until | could resolve the problem. Many times
Eclipse would only show a “Java Null Pointer Exception” when loading the Ul editor and
it could no longer build or run the application. The only fix | could find that consistently
worked and resolved the problem was deleting the .android folder. This folder contains
your Android Virtual Devices and other configuration settings forcing me to reconfigure

them several times.

As part of the application side that | worked on, | also implemented the Android
service that was responsible for running in the background and facilitating all
communication between the user interface, local setting files, and the networking

subsystem. This service is called the Connection Manager and is heart of the whole

application. It controls the network subsystem and is the center of communication for
the application. Once the user is logged in, the Connection Manager service takes over
control of the whole open XMPP session and callbacks are registered with the
networking subsystem to receive notifications of any and all interesting events that
happen, including but not limited to authentication failures, incoming messages,
presence updates, and subscription requests. When a callback event occurs, the
Connection Manager will appropriately handle it. Some responses include notifying the
user that something happened which is currently handled by triggering a standard
Android notification and posting it to the system-wide notification center. The
Connection Manager is also responsible for posting events to the different app-owned

activities and user interface controls so that they can update accordingly.

In order to effectively communicate between the Connection Manager and the
Android activities, | had to learn how the Android activity life cycle functioned and
always be aware of the state it was in for any activity that the Connection Manager
needed to communicate with. The reason the state is necessary for this communication
is because the only time an activity can change what is being displayed in its user
interface is when that activity is in the foreground. Before | understood this, the service
would attempt to post events to activities that were not the currently displayed activity
causing the entire application to crash. | later learned that this was because | was
attempting to change the user interface when the activity was paused or possibly not
even created yet. Attempting to change a user interface of an activity that is not
currently in the foreground will cause the application to crash. Using the different
methods Android provides you are able to determine what part of the lifecycle that each
activity is currently in to know whether or not you are able to update its user interface.

Figure 1 below shows the lifecycle of an activity from creation to activity shutdown.

Figure 1: Android Activity Life cycle

P

l-" Activity \
launched !

b y
onCreate()

'

onStart() B B — onAestart()

¢ n
User navigates onResuma()
to the activity -

B o

Pe -y A —
|‘ App process 1| Il. Activity -II
\ killed / running

| — ;I—/
A
Another activity comes

nto the foreground
— User returns

+ to the activity

Apps with higher priority || e
need memory onPause()
|

The activity is
no longer visible

User navigates
*‘ to the activity
onStop() J

I
The activity is finishing or
being destroyed by the system

v

onDestroy()

'

o

/ Activity A
I\ shut down ,J

Understanding the Android activity lifecycle was also important in other aspects
of the application. Often times adding code to the onResume() and onPause() callbacks
was necessary in order for the activities to be in the desired state. Things such as
broadcast receivers needed to be registered and unregistered when the activity is
paused and resumed. | also used onResume() to render and new user interface
updates that may have happened while that activity was paused. Using the provided

callbacks | was able to determine whether or not the activity was currently paused.

The home page of our application holds all ongoing conversations. You are able
to open new conversations by hitting the “+” button in the action bar at the top of the
screen. Each conversation in this activity is displayed to the user interface with a
fragment. “A fragment represents a behavior or a portion of a user interface in an
activity.” One reason fragments are nice is because they act like an activity within their
host activity. You can add a tag to each fragment so that you are able to get a handle
on it later. Doing so allows you to change what it is displaying when new data comes
and needs to be updated. Every fragment’s lifecycle is directly affected by the host
activities lifecycle. For example, if the activity is paused, you cannot update any
fragments inside of the activity because all the fragments are also paused. However,
when the activity is resumed you can manipulate all of the fragments at will. The reason
| decided to use fragments in the user interface was so it was easier to manipulate
smaller portions of the user interface at a time. Being able to separate each
conversation to hold its own data like a class instead of requiring the activity to
remember the state of each conversation. Figure 2 shows part of a screenshot of the
home activity. You are able to see how the fragments are used to separate the
information based on the conversation.

Figure 2: Home Activity

NGO TYE (29% 8 11:06 PM

BatChat

adam A few seconds ago

talk to you later my friend. | hope u have a...

test 6 days ago
_ hey

In order to provide a consistent user experience throughout the entire application,
| designed the new conversation activity in a very similar way to the home page. Using

fragments to show all of the friends currently on your roster and to also show pending

subscription requests. If | were to design this page again | would change the way | did
this. Using fragments in this situation gives no advantage in the user interface because |
never update or change any information. The only piece of information on each
fragment is the contacts username. Instead of using fragments, a cleaner and more
concise way would have been to use an Android listview. | could have had the same

desired user experience with more concise code.

In the action bar of the new conversation activity | also added the functionality to
send a subscription request. Instead of opening a new activity or window inside the
current activity, | added an EditText to the action bar with a search icon next to it. You
can then enter a XMPP client handle into this text box and press the search button. If it
isn’t a valid XMPP client handle, an Android toast will pop up and tell you so. Otherwise
it will send the subscription request to that user and they will have the opportunity to
accept or reject the request. My reasoning behind adding the subscription request to the
action bar was to make as few user interface screens as possible. | did not want to
make the user navigate from screen to screen and get lost in all of the commotion.
Adam and | had discussed that the simpler the user interface is, the better the user

experience would be.

Developing for the Android environment proved to be a difficult process as |
encountered several problems while working on this project. The IDE would often get
into an inconsistent state or have random errors. The fix could range from requiring
re-installs to just restarting the IDE. This greatly impacted my progress on the project, at

times, because it required me to stop coding and fix my environment.

There are only two development environments to use for targeting the Android
platform and for this project we ended up using Eclipse. We chose to use Eclipse
because we weren’t sure if Android Studio would be feature complete enough for our

project. Many of the different Scala and intermediate plugins that were used to compile

and transform the generated code were recently developed which means that they did
not fully support Android Studio, causing us to use Eclipse. Eclipse is currently the most
widely used and is the officially accepted development environment for Android which
meant that it was expected to be a safe choice for developing in, but is currently on a
plan to be replaced by a new IDE. Android Studio is the new environment that is built on
a completely new base IDE that was designed to fix many of the problems that
Eclipse-users suffer from. If we were to do this project over again, we probably would
have tried using Android Studio. While it may not have been fully supported by all of our
plugins, we believe that we could have avoided spending a significant portion of our

time fixing corrupted environments.

At first | thought this project would be fairly easy considering it was a lot of user
interface work. However, as | progressed into the project it proved to be more difficult
than | had first anticipated. | discovered interacting with the framework caused problems
that took a more advanced design to solve. Also, running into problems with Eclipse
slowed my progress and made working with Android very frustrating at times. In the end
it was an excellent way for me to learn android. It was also a great way for me to use a
school assignment to learn the real world development skills required to work in a team
environment. Working with Adam also really improved my code reviewing abilities.
Adam has had prior experience with doing serious code reviews and having him there
reviewing my code really helped me to see how reviews can improve the codebase and
decrease the number of regressions. Using Redmine to manage our progress in the
project also helped me to see what | still needed to accomplish and fix, which helped to
keep me on track. Overall this project ended up a success. It served as a good
experience to end my undergraduate degree and start my career as a software

engineer.

