

Facebook for Birds: Adding
Statistics and Cool Numbers

NORTHERN MICHIGAN UNIVERSITY

David Germain | CS480 | 4/10/2018

PAGE 1

Check out the website at jpcp.nmu.edu

Background

There are these birds. People want to study them and understand their behavior,

culture, and buying habits. Just kidding about those last two. Some biology people have

banded the birds with RFID tags around their legs. They also made special feeders that

contain their favorite seeds and detect when a banded bird visits and records that to an

SD card. Later, Jerry Connor and Michael Whalen upload the data to a database on

Euclid. Then the basic API and website serves that up to users.

Introduction

The main purpose of the JP Chickadee Project website is to engage the

community and make them curious and about birds. In addition, to get them excited

and asking questions. To help achieve this for my senior project, I added cool graphs and

numbers to the website and designed the accompanying backend.

I chose this project because I like statistics and handling large amounts of data is

exciting. My near-term career goal is to work on web apps, so it feels like a good idea to

have a sample of my work online to show potential employers.

http://jpcp.nmu.edu/

PAGE 2

Overview

There are several parts to this project. The main database, which I added a

column. A thing that regularly checks the databases for newly added entries. A thing

that does the statistics. A thing that caches computationally heavy statistics. A server

that answers http requests. And front-end components.

Technologies

 Since this project is part of a bigger whole, I want my code to be maintainable by

other people. To me that meant trying to keep the technologies to learn to a minimum.

In addition, when picking a framework or library to pick one with decent

documentation.

I ended up using the following technologies:

Technology Description
JavaScript
Chart.js
Leaflet Library for displaying maps
Lodash Library of nice utility functions
Pug Make templates with variables that turns into HTML
Vue Front-end component framework
Vuetify Material design that works with Vue
HTML
CSS
Npm Node package manager
Node JavaScript runtime environment with lots of libraries
Git

PAGE 3

Front-end Structure

Components make up the front-end. Components are made of a combination of

sub-components and HTML. The levels of components that I have used are pages,

organisms, molecules, and atoms. Which I learned from here. For example, there is a

bird profile page (below in purple). This is made up of a bird profile and a visit list

organism (below in green). The bird profile organism is made up a visits pie chart, a

movement map, and an associations list molecule (below in orange).

I had a hard time determining whether pages, organisms, or modules should be

making the network requests. I still feel it is somewhat arbitrary, I picked molecules, and

just consistently stuck with it.

A downside with having molecules make the network requests is the possibility

of duplicated requests. If I have a pie chart and bar graph molecule that both hit the

same API endpoint that is two network requests for the same data.

On my proposal, my grading rubric has points for making “modular

components.” What does that mean? To me that means individual graphs/components

are self-contained. If you declare a component with the correct properties, it should just

work and look okay.

http://atomicdesign.bradfrost.com/chapter-2/

PAGE 4

A modular component needs to know:

 how to get the data it needs

 how to update when the properties change

 basic styling like min-width and min-height

Reducing Big Duplicated Network Requests

On the front-end two of my components, the leaderboard and associations list,

need to display the birds’ band combination (for example G0/Y# or #R/W0) and name

(for example Karen or Tim). The problem is that my analytics API does not know about

band combinations or names, to my API birds are simply their database id. That means

the front-end has to get them from somewhere else. Band combinations are from the

CRUD API by making a GET request to /api/birds/. Names are in a dictionary stored on

the front-end.

The leaderboard and associations list components need to show band

combination and name. Making that big request to /api/birds/ each time a user views a

bird profile or homepage was noticeably slow. I solved this issue by wrapping the

endpoint in a class and making it a singleton. Now the birds are only requested once.

PAGE 5

Since the website is a single page application, the singleton lives while the user switches

from page to page and re-initializes on page refresh.

Back-end Structure

 The backend consists of three main pieces. The server, statistics, and database

wrapper. The server is a program that is always up and running. The database wrapper

checks for newly added birds, feeders, and visits. We know if an entry is new because I

added an isSynced column to each table that by default is false. The database wrapper

emits the visits to the statistics object and they are appended to an array. Most statistics

are calculated on request using the array. I made a cache object because calculating bird

associations on every request was really slow.

Most Fun Part

 Lodash is a utility library for JavaScript. It is great for functional programming. It

allows for method chaining and registering custom methods. To explain see the picture

below, b_ is Lodash with my custom functions added like filterByBird,

filterByTimestampsOlderThan, and countByFeeder.

PAGE 6

Mistake #1

If I were to do this project over, I would have the front-end communicate with

the back-end using sockets instead of HTTP requests. HTTP requests work okay, but for

the “Updates without page refresh” option of my assignment it is not so good. In

addition, I think using sockets would encapsulate the statistics better by keeping the

rate of change close to where the statistics are. For example, a bird’s lifetime statistics

probably does not significantly change by the minute, so with the current

implementation the front-end needs to know how often it should refresh its data for

each type of statistics.

PAGE 7

Mistake #2

 Pug is a like HTML but has templates and variables and during the build step, it

becomes HTML. Originally, I was going to use Pug instead of html because it seemed

nicer. However, I soon regretted it and switched because all the code samples for Vue

and Vuetify use HTML.

Mistake #3

 For the “service design (select one)” portion of my assignment, I feel a little

confused about which point tier I achieved. See the tiers in the picture below.

The database is behind a wrapper class that changes the representation of

feeders and birds to just their database id and emits them as JSON. Therefore, I feel I

achieved past the first tier. I think I am at the second tier because although I only get the

newly added data, I recalculate the stats instead of doing some kind of cool updating.

For example, a statistic of the ongoing visits, if I get one new visit I throw the total away

and recount them instead of just adding one to the total.

PAGE 8

Grading Rubric

Grading Scale

 22≤ A

 20 A-

 18 B+

 16 B

 14 B-

 12 C+

≤10 C

Lines of Codes

Frontend: 531

Backend: 517 (and 250 of unit tests)

Fake feeder: 43

