

Personal Finance System
Dawson Dauphinais

CS480 – Northern Michigan University

11/28/2021

2

Introduction

Throughout my time in College, I have learned many things- I might even like to consider

myself well-rounded! But, if there is one thing that I have learned, it is that I am terrible at

keeping track of my finances. Of course, over the years I have tried to get better at it and have

tried several different financial applications, but, none of them really clicked with me. So, when

it came time to think of a senior project idea, I finally decided that this would be the (nearly)

perfect project for me.

My original idea was to create a Windows-based application that would allow the user to keep

track of their finances, as well as provide several different tools for them. I wanted to use a

PostgreSQL database to store all of the user’s data, and then figure out a way for the application

to interact with Microsoft Excel. This project definitely evolved as time went on, and I

eventually moved away from both the idea to use a PostgreSQL database, as well as the idea of

having the application work with Microsoft Excel.

My application was originally going to be written in C++ (it still is), have a graphical user

interface for interacting with the application, and then use some sort of PostgreSQL library for

connecting to a database, as well as a library for communicating with Excel. After doing a fair

bit of research, I made a few course-altering decisions, which I think worked out for the best in

the long run. First, I decided that since there was only ever going to be one user using the

application at a time, a PostgreSQL database would be a bit overkill. Instead, I decided that I

could store the user’s data as a JSON file, where the main JSON object is an array of user-

created accounts. Second, I decided that I really didn’t need excel for my project, because I could

3

implement most of the features that I wanted to use from Excel in my GUI just by writing it

myself. Lastly, I finally decided on a GUI library for my project—wxWidgets.

Overview

This application is meant to be ran like any other application you might have on your machine.

You start the program, an application window appears, and then presents you with options at

each different “panel.” First, the user is prompted to choose between using an existing save file

or creating a new one. This file is where the JSON array of accounts is stored. If the user chooses

to use an existing file, a file-picker window opens and allows the user to select a file anywhere

on their machine, as long as it is a JSON file (for simplicity and the sake of time, I did not

implement a way to ensure that the JSON file contains the correct information—at the time of

writing this, I assume the program would just hard-crash. The user is then presented with a list of

the different names of accounts that were found within the file, which they may choose to use. If

the user opts to create a new save instead, the window changes to a new page where the user is

prompted to enter several different fields (name of the account, balance on the account, file

name), as well as select a directory to save the JSON file in (this opens a similar window as

choosing an existing file). After the user has either loaded a data file or created a new one, they

are brought to the same page in the next step in the flow of execution. The arrive at a simple

homepage, where they are presented with several options (View Account, Update Account,

Create Account, Switch Accounts, Tools, and Exit). These options are buttons that the user may

click to interact with the application.

4

Technology Overview

As mentioned previously, this application was written in C++. However, many technologies

were used, and almost of all of them had quite a significant learning curve.

Since this is a C++ project at its core, I needed to figure out a way to allow the application to be

built easily without having to write my own makefile. I came across this technology called

CMake, which, from my understanding, is similar to Make. However, CMake allows you to

configure a file called CMakeLists.txt, which essentially is where CMake looks for the specified

configurations of your project. Here, you can link libraries, set different compiler flags, and

many other things that I didn’t get to test out. For my project, specifically, I used CMake to link

the two external libraries that I used (more on that later) to my project, as well as define all of the

files needed. When CMake is called with a specific generator, in my case I used the MinGW

Makefiles generator, it generates a Makefile based solely on the CMakeLists.txt file, which can

then be built.

This is not the only use I had for CMake, though. Since I was using two external libraries, which

I did not have any experience with at all (I had never used external libraries before this), I had to

compile and install these libraries on my machine so that they could be used by my project. So,

CMake was used to compile and install the wxWidgets library that I used for the GUI, but I

discovered a useful feature when going to build the other library that I used for JSON—you can

directly specify a GitHub repo to be cloned at built at compile time using CMake! So, the JSON

library that I used is pulled directly from GitHub, and I never had to manually compile it.

5

Going into this project, I very vaguely knew what JSON was. I had worked with it a tiny bit

during my internship, but never directly. So, my knowledge of it at the beginning of this was

rather limited—I knew that it was the JavaScript Object Notation, and that it was used very

commonly to store what are essentially key-value pairs. So, I had to do a fair amount of research

on how to effectively store data as JSON. Now, C++ doesn’t have a built-in JSON library, so as I

mentioned earlier, I had to find one myself. The library that I used for JSON is the

<nlohmann/json> library that can be found on GitHub. So, not only did I have to learn JSON, but

I had to learn how to effectively use this library within my project for storing and retrieving data.

This included building a JSON object from objects that I had created in my project. For example,

in my project I create an Account object that holds the user’s account information. So, when the

program is started (assuming they use existing data), I have to parse the JSON file using the

<nlohmann/json> library and construct my Account object from only that data. The same applies

in reverse if I want to save data—I convert my entire Account object into a JSON object, and

then write it out to the file. You can find the proper citations for this library in my source code.

For the GUI, I was torn between using Qt and wxWidgets. It seemed to me that both were rather

popular, and both had their pros and cons. After a lot of tinkering and experimenting with both

Qt and wxWidgets, I finally decided to use wxWidgets. This is because after all of the

experimenting I did with Qt, I could not get it to cooperate with the <nlohmann/json> library,

whereas I could get wxWidgets to. So, I did end up using wxWidgets for my project. At first, I

found this library incredibly overwhelming. I did eventually come to figure out the very basics of

6

it, which I’m proud of even doing just that. I would say that overall, the GUI and wxWidgets

was the most difficult part of my project, as it was the furthest I had to go out of my comfort

zone. I don’t know how I did it, but after reading through an incredible amount of

documentation, I was able to get something working, and for that I am very proud of myself.

Learning how to go from a “while(run==true)” loop to an event-based application was also

rather challenging, but it definitely was not as difficult as just learning the different functions and

classes belonging to wxWidgets.

Another technology that I used, although wasn’t very necessary, was Doxygen. Doxygen parses

a given source directory looking for any JavaDoc comments. It then generates documentation for

all that it has found as HTML files. While this wasn’t necessary for my project, and wasn’t very

difficult to use, I think using it made my project both look and feel much more professional. You

can find the documentation for all of my code inside the “docs” folder. The index.html file will

bring you to the home page of my documentation.

Organization

From the beginning, I knew that I was going to have to stay as organized as possible in all

aspects, as this was undoubtedly going to be the largest project that I have ever created. So, what

I have done is I have organized the source code into two different categories. The main source

code, which contains the classes that I designed for the application, and the app source code,

which contains the classes that are for the main application—these classes specifically pertain to

wxWidgets.

7

The actual application is organized a little differently. I organized it in a way so that there are

different panels shown according to which functionality is being used at the moment. For

example, the main page is a panel, the account home page is a panel, the view account page is a

panel, etc. This isn’t the case for the entire application, as creating a panel for everything wasn’t

necessary, and honestly probably isn’t the correct way of doing it anyways. The different

functions of the application are organized based on the request of the user. For example, the

financial equations are all located within the Tools panel, which can be accessed from the

account home panel. See the graphic below to see a bit more into the organization.

Difficulties and Improvements

For the majority of my project, I would say that the difficulty was about what I expected—just

slightly more difficult than I was comfortable with (intentionally!) As I mentioned earlier, the

hardest part for me was the GUI by far. It was the most I had to research, experiment with, and it

definitely required the most amount of time. I have never created an actual GUI before this

project, and had only brief exposure to JavaFX (did not take Java at NMU). It was harder than I

expected to convert a command-line application into a GUI application—however, I am glad that

I wrote the entirety of my application as a command-line app first, as it allowed me to get a

better feel for my application, and was very useful as a reference.

The JSON library wasn’t incredibly difficult to work with, but it did require some

experimentation, as the documentation that I found wasn’t quite what I needed. There were

several examples, however, so I really just had to figure it out on my own. I would say that this

8

was about as difficult as I expected, maybe slightly harder, but overall, it wasn’t horrible to work

with by any means.

 There are several improvements that I would like to have made if I had more time, but this

project came right down to the wire as it was. First of all, I would have liked to make the GUI

look much better… At the time of writing this, I basically just have an almost barebones GUI

with simple buttons and text entries. I’m not artistic at all, though, so this would probably have

taken me another 6-8 weeks. I would have also implemented more features than I already have—

maybe a calculator that told me how to become a millionaire based on my most recent paycheck.

It would also have been really neat to have some graphs that show spending vs. time and income

vs. time. I will say that I am happy with the charts that allow the user to see a list of both their

expenses and their incomes, but it would have been cool to give some more visual

representations of their account(s). Also, rather than using wxPanels I would probably refactor

my code to use wxSizers, which would probably decrease the number of variables used within

my MainWindow class.

 Conclusion

In conclusion, I would say that this project has been one of the most mentally demanding

projects that I have ever done. It required me to truly test my ability to adapt as a programmer

and learn new technologies on the fly. As a whole, I think that I accomplished what I set out to

do, and although there are a few things that I think I could have done better, I know that I did my

best with the time I had. Like I mentioned earlier, this project came right down to the wire—as I

9

spent most of my Thanksgiving break working on the GUI. I have a great sense of pride in this

project, as there were times I didn’t think I could do it—but I did! I can honestly say that I feel

like a better programmer after building this project. I did accomplish almost everything that I

wanted to do, but I think that I definitely could have managed my time better.

Switch Account

Page 2A)
Choose from found
accounts

Switch Account

Page 3A) Update Acc

Present user with
options for updating acc

Page 2A)
Choose from found
accounts

Switch Account

Page 3A) Update Acc

Present user with
options for updating acc

Page 1)

Page 2)
-
-
-

Choose from found

Page 3) Account Home
Present the user with different
options to interact with account

or view the tools

Page 3A) Update Acc

Present user with
options for updating acc

Page 1)
-Enter

- Exit

Page 2)
 Use Existing
 Create new
 Exit

Page 3) Account Home
Present the user with different
options to interact with account

or view the tools.

Page 3B) View Acc

Display acc name,
balance, transactions,
and list of

View

Use Existing

Page 2B)
Enter starting info
for initial save

Page 3) Account Home
Present the user with different
options to interact with account

Page 3B) View Acc

Display acc name,
balance, transactions,
and list of incomes

Page 2B)
starting info

for initial save

Page 3B) View Acc

Display acc name,
balance, transactions,

incomes

Page 3C) Tools

Present user with
various Tools

10

Page 3C) Tools

Present user with
various Tools

