

Senior Project:
Computing Countenance

Liz Klarecki

Overview

For my senior project, I created a generative data visualization written in
Processing - programming language and development environment - that interprets
the data from captured images of its viewers. Using OpenCV face detection
libraries in Processing, an iMac camera is running during the Devos Art Museum
hours. Whenever it detects a face, an image is captured, and the image is then
parsed through the Rekognition API to gather data – age, gender, smile, and
emotion. The image and data are stored in a JSON file and in a MySQL database.
The Processing program creates graphics based on each set of data to be added to a
visualization projected on the gallery wall above. There is a supplementary website
on the iMac screen that explains the project and displays all the images captured
with the respective data collected. Below is a detailed description of all
components of my project, followed by a diagram.

Processing + OpenCV Face Detection

The first element of the project is the face detection component. Written in
Processing with the assistance of the OpenCV face detection library, the program -
or as Processing refers to it, the sketch - opens the webcam and loads the Frontal
Face library. The Face class creates a Face object every time a new face is detected
and adds it to the array list in the main program of current faces. When a face is
detected a conditional checks the array list so the detection persists rather than
continually detecting the same face (and saving hundreds of repetitive images). This
is explained in more depth in the code sample below. There is a timer variable that
gives time for the face to disappear before it deletes the face from the array list.
There will be a demo of how the face detection part functions during my
presentation, however below is a screenshot from testing.

Face Detection Code Sample
When OpenCV detection is called, it gives a new array of Rectangle objects for
each frame. Meaning if an image were to be captured every time a face was
detected, there would be hundreds of repetitive images. Below is the solution to
this issue – using an arraylist to store Face objects and allowing the detection to
persist.

 Rectangle[] faces = opencv.detect();

If there is nothing in the ArrayList, a new Face object is created for the Rectangles
in the face array created by OpenCV.

 if (faceList.isEmpty()) {
 for (int i = 0; i < faces.length; i++) {
 faceList.add(new Face(faces[i].x,faces[i].y,faces[i].width,faces[i].height));
 }
 }

If there are less Face objects in the arraylist than Rectangles detected from
OpenCV, a new Face object is created for the residual Rectangles. Booleans keep
track of which Rectangles have been matched to prevent two Face objects from
accounting for the same face.

 else if (faceList.size() <= faces.length) {
 boolean[] used = new boolean[faces.length];
 for (Face f : faceList) {
 float record = 50000;
 int index = -1;
 for (int i = 0; i < faces.length; i++) {
 float d = dist(faces[i].x,faces[i].y,f.r.x,f.r.y);
 if (d < record && !used[i]) {
 record = d;
 index = i;
 }
 }
 used[index] = true;
 f.update(faces[index]);
 }
 for (int i = 0; i < faces.length; i++) {
 if (!used[i]) {
 faceList.add(new Face(faces[i].x,faces[i].y,faces[i].width,faces[i].height));
 }
 }
 }

If there are more Face objects in the arraylist than face Rectangles found with
OpenCV, the Face objects get matched and leftover ones are marked to be deleted.

else {
 for (Face f : faceList) {
 f.available = true;
 }
 for (int i = 0; i < faces.length; i++) {
 float record = 50000;
 int index = -1;
 for (int j = 0; j < faceList.size(); j++) {
 Face f = faceList.get(j);
 float d = dist(faces[i].x,faces[i].y,f.r.x,f.r.y);
 if (d < record && f.available) {
 record = d;
 index = j;

 }
 }
 Face f = faceList.get(index);
 f.available = false;
 f.update(faces[i]);
 }

Rekognition + JSON + MySQL

During the creation of each Face object, the program saves an image of the face
and sends a call via a HTTP query string to the insert PHP script. The insert PHP
script takes the image and parses it through the Rekognition API which returns a
JSON Object with the following data: id, age, gender, emotion, smile, day (with a
timestamp), and overall confidence. The JSON Object gets saved to a JSON Array
in an external file and the script parses that file and then calls an SQL insert
operation to save the datasets into a MySQL table. Only images with a high
confidence level and sufficient data get inserted to the table to prevent blurry
images or non-face images from being included in the visualization.

The data for emotion is a confidence level for each emotion: happy, sad, surprised,
angry, calm, and confused. The PHP script compares the values for each emotion
category and stores the one with the max value to be used in the visualization.
Below is a short sample of the JSON Array saved for each detected face and a
screenshot of the MySQL database schema (with data from a testing session).

[{"face_detection":
 [
 "confidence":0.92,
 "eye_left":
 {
 "x":91.5,
 "y":72.7
 },
 "eye_right":
 {
 "x":113.2,
 "y":70.6
 },
 "nose":
 {
 "x":104.6,
 "y":79.6
 },
 ...
]
 }]

Processing sketch + visualization

The Processing sketch then loads the data from the MySQL table using HTTP query
strings to save the data as variables for the visual. The datasets are saved into an
array for each id. The visualization is written with the Processing language using
basic visual structures. Each object in the visualization represents a face that was
detected. The shape of the object is based on the gender – circles are females and
squares are males. The color derives from the dominant emotion detected. The size
is determined from the age. The speed of the object is determined by the smile
rating. The objects animate in circular motion in rings that represent the days of the
exhibition - December 1st being the innermost ring. The visualization will continue
to grow each day until there are 12 rings at the closing reception on December
12th.

PHP + HTML5 + CSS3 + Canvas website

The supplementary website is built in PHP using HTML semantics and CSS3
animations and transitions. The background is a Canvas animation. It loads the data
from the MySQL table and uses basic SQL operations like AVG, COUNT, and SUM
in data section to display the collected in a traditional infographic. The infographic
shows the data from the entire exhibit but can also break down by day to see how
the statistics changed each day.

Inspiration

As a graphic designer and computer programmer, I am captivated by data and the
way it can be interpreted. In my work, I use code to organize quantities of
information, and design to present that data in a cohesive way. Technology has
encouraged innovative methods that capture the infinite information surrounding
us and computational techniques are providing new insights into large quantities of
data. From my project, I'm hoping to gain insight into the relationship between the
order in statistical data and the variability in human expression.

My recent research into face detection from the previous semester special topics
course in Web Programming specifically inspired me to explore this emerging
technology and use face detection as the data source for my visualization. Face
detection is creating many new possibilities in technology; it is assisting in security
applications, identifying people to tag in Facebook photos, and helping people
with Prosopagnosia (face blindness) identify people with face recognizing glass
technology.

The emotion detection component adds an entire new level of possibilities as well.
Although it is an estimated calculation by the API, the emotion data is collected
without any external interference. In this small experiment, I will be able to analyze
how people generally feel while observing the Senior Exhibition and how it
fluctuates from day to day, hour to hour. This is a more beneficial strategy than any
survey where many factors play a part in the end result and allow for skewed data.
In my project, the images are captured before the viewer even has time to realize
what my project is about.

Processing sketch

Camera runs OpenCV
Face Class

Images saved

PHP script runs images
through Rekognition

JSON file saved
PHP script parses and

inserts to MySQL

MySQL database stores
data table

Projected visualization

Website
PHP, HTML, CSS, JS

Technology

The main technology used in this project was Processing (processing.org).
Processing is a programming language and development environment that was
created by software Casey Reas and Ben Fry to encourage software in visual arts. Its
focus is on visual, interactive media insight. I was introduced to Processing as a
freshman at NMU and have been experimenting with it over the years. I utilized
the OpenCV face detection library in Processing after learning about it during my
CS Web Programming class in Winter 2014 (opencv.org). From my research into
face detection and recognition for this project I found the Rekoginition API and was
very interested in the emotion detection component (rekognition.com). Through my
testing I found decent accuracy for emotion, smile, and gender detection. The age
detection seems to be the most inaccurate one in my opinion, but I was impressed
with this API overall. The Rekogition parser returns a JSON Object that is saved but
also parsed to insert the data into a MySQL database. PHP, Chart.js, HTML5, and
CSS3 are also used to create my website. The website runs on the localhost using
MAMP, and I learned about technical details like displaying two monitors at full
screen and using Google Chrome in Kiosk mode for the exhibition.

Features

While working through the semester on this project many factors changed. I
executed as many of the proposed features as possible. The focus changed a lot
when I started researching emotion detection. In the end, I spent more time on
learning the Rekognition API and improving the website experience for within the
gallery instead of working with NodeJS or a Web Application.

Proposed Features Executed Features

OpenCV face detection application OpenCV face detection application

Image database Image database

Processing JavaScript application Processing JavaScript application

Data visualization with 4 unique data
points

Data visualization with 6 unique data
points

Live-time updating Live-time updating

NodeJS server Rekognition API

Supplementary website on process
utilizing PHP and MySQL database

Supplementary website on process
utilizing PHP, MySQL database,
Chart.js, Canvas animation, CSS3

Web application

Reflection

From working on this project, I learned how to integrate multiple languages,
systems, and ideologies into one cohesive piece. From the planning, to coding, to
installing – I worked to coordinate and troubleshoot. I had little familiarity with
Processing, OpenCV, and using APIs before this project and I have improved my
knowledge of PHP, MySQL, Canvas, and JSON greatly. Upon the completion of
this project, I have better understanding of libraries in Processing and API SDKs,
greater practice with SQL functions and parsing JSON, and knowledge about
passing variables between Processing and PHP. I also improved my web
knowledge and practice of HTML and CSS by using data attributes, Canvas, CSS
animations/transforms, and CSS before and after tags for the first time.

Beyond the technology aspect of this project, I learned a lot about preparing for an
exhibition. I spent a lot of time testing my piece, editing, and reorganizing all
aspects of my project. I worked between the CS and Art departments to coordinate
the details for my piece and gained practical real life experience for executing an
interactive data art piece.

*I would like to thank the Computer Science Department for providing my with the
necessary equipment for me to execute this piece for my Senior Exhibition.

