
Combs 1

Grant Combs

Dr. Jeff Horn

CS480

1 December 2021

Cipher Encryption and Decryption

Introduction

 During the past few years, encrypting and decrypting ciphered messages has become a

shared hobby between me and my friends. Writing a message, taking the time to encrypt it by

hand, and then sending it in the mail provides an extra layer of connection that digital means of

communication cannot always provide. This process has become a creative way for us to stay in

touch across long distances, and presents a challenging puzzle when attempting to decrypt a

ciphered message from another person. When presented with the opportunity to write a program

of my choice, it seemed appropriate to write one that had to do with one of my hobbies;

therefore, I decided to write a program that would automate the process of encryption and

decryption.

 The premise of the program is simple: the user can either choose to encrypt a message or

decrypt one. If they choose to encrypt a message, the user enters the plaintext, then fills out the

parameters for the cipher that they want to use, and clicks “Encrypt”. To decrypt a message, the

user enters the encoded message, then selects what cipher they think was used, then clicks

“Decrypt”. The user can select from a variety of different ciphers, both monoalphabetic and

polyalphabetic.

Combs 2

 The purpose of the program is to speed up the process of amateur codebreaking. While it

does not include every cipher in existence, it does contain several of the most commonly used

ones. In addition to aiding amateur codebreaking, the program also serves to further my

understanding of how each individual cipher functions, and how to best go about deciphering

messages.

About the Project & Challenges

 For this project, I wanted to create a program that could run on both my university-

provided laptop and my personal Windows machine. I also wanted to give the program an actual

user interface, something I had never done before. To accomplish both of these, I decided to

create a Windows Power Form Application in Microsoft Visual Studio 2019. Microsoft gives

programmers the option to write Windows Power Form Applications in either C# or Visual

Basic; I picked C# as it is more closely related to programming languages I have already learned.

Coming primarily from a university background of C++ and Java, I faced a few

challenges learning the C# language. For example, prior to this project, I had never learned a

programming language purely from self-teaching. Given that I had already had three and a half

years of programming experience, this was not quite as difficult as I envisioned it, but was still a

challenge. I started by giving myself a quick overview of the language by watching a few

introductory videos on YouTube. Then, I programmed a basic calculator with the help of some

tutorials online, which helped familiarize me with the syntax, basic feature-set and quirks of C#

as well as the process of building a Windows Power Form Application in Visual Studio, and how

Combs 3

the program connected the user interface of the program to actual code that could be executed

when certain actions were carried out by the user.

The program itself is designed to be as simple and straightforward as possible. When a

user is ready to encrypt or decrypt a message, they can select a cipher from a dropdown menu.

When the user selects a cipher, a method is called that changes the parameters visible to the user.

The user is then able to modify those parameters and enter their message, whether plaintext or

the encrypted message. When the user clicks “Encrypt” or “Decrypt”, there is a switch that gets

the name of the cipher that is currently selected in the dropdown menu, which then calls the

appropriate encryption/decryption method for that cipher. The simpler ciphers, such as the

Caesar and multiplicative ciphers, have relatively simple methods, whereas more complicated

ciphers, such as the Hill Digraph and Playfair ciphers, have more complicated methods. The

latter also have helper methods that break up the code into modular parts: one that creates

digraphs based on the user message, and one that multiplies matrices. This allows these portions

of code to be used by multiple other methods.

The program also contains a great deal of error checking, something that I have not

always included in my university programs. However, when building a program that is made to

be used by an end user, I needed to make sure that there was no way to make the program crash,

which required a lot of attention to what mistakes a user could potentially make to cause

problems. When an encryption or decryption method is called, the OptionRequirementsMet

method is called, and the necessary parameters for that cipher are included in the arguments

passed to the function. The function then returns a list of objects, which are the user interface

elements that have not been appropriately filled out by the user. The method

Combs 4

DisplayRequirementError then displays an error message containing all of the errors detected in

the OptionRequirementsMet method.

When I began my project, it was my impression that C++ and C# were similar languages.

However, I soon realized that C# worked quite differently, and I discovered that there were many

parts of the language that were much more intuitive to me- for example, I found it very useful

that you can pass a variable “reference” to a method as opposed to having to pass a pointer to

that variable. Essentially, C# references demonstrate a slightly higher level of abstraction that

pointers, as directly working with pointers/memory addresses is referred to as “unsafe” and is

generally discouraged. I learned that C# also contains several other useful features such as

automatic garbage collection, and the ability to use a string as the decision variable in a switch,

which I used in my program. Thus, learning C# during the project offered me a unique learning

experience that gave me exposure to a new set of programming features and gave me the

opportunity to learn a programming language on my own terms.

What went well, and what didn’t

 Throughout the duration of my project, there were aspects that went really well, and areas

in which I struggled. Starting with the positive aspects, one of the easier parts of the project was

writing the code that interacted with the user interface. Writing methods that ran when a button

was pushed, or a drop-down menu item was clicked, was relatively simple compared to the rest

of the program. Another aspect of the project that went fairly well was the methods that handled

encoding messages. The monoalphabetic cipher methods were the easiest to write, given that

each encrypted letter is essentially the result of a function of the input letter. Some of the

Combs 5

polyalphabetic ciphers, such as the Hill Digraph and Playfair ciphers, were more difficult to

implement given their relative complexity. However, after many hours spent visualizing (and

later debugging) how to convert the encryption process to computer code, I managed to

successfully implement these ciphers.

 Programming the methods that handled decryption with known parameters was also

relatively simple to implement, as these were merely a reverse of the encryption methods that I

had already written. What challenged me the most was writing a method that would be able to

decrypt messages when the user did not know the parameters with which a ciphered message

was encoded. When you do not know exactly what words you are searching for, the task of

automated decryption becomes difficult. I asked myself questions like, “How does the algorithm

decide when it thinks it found a match to the cipher?” and “What is an appropriate way to rank

potential cipher solutions?” The solution I devised runs through all possible combinations of a

cipher’s parameters and assigns a score representing how many matches to real words it found.

The program does not have an unlimited vocabulary—instead, it draws from a list of the most

common words in the English language. The program will then display the solutions with the

highest score. This approach, while functional, does not provide great runtime. In order to

optimize runtime, I was able to tweak the number of words that the algorithm searched for—the

minimum number of words that I tried searching for was 100, and the maximum was 10,000

words, which was the size of the full list. This led to an interesting series of tests to determine the

optimal dictionary size.

 Not all of the project went as planned, though. I originally intended for my program to

only be for decrypting ciphered messages; however, as development began, I decided that I

wanted the program to be a more well-rounded cryptography program that would be useful for

Combs 6

both encryption and decryption. After all, while there are many already existing programs that

attempt to decrypt ciphered messages, there are not many that encrypt messages. If I had the

opportunity to do the project over, I think that I would investigate writing the program in another

language, particularly one that would compile and run efficiently on Linux. However, since I had

no experience in designing user interfaces, Visual Studio’s Windows Power Form Application

design window was very helpful, and was a solid first step in designing real user interfaces.

Another aspect I would perhaps do differently is my approach to decrypting messages when the

user does not know the parameters with which a message was encoded. While my

implementation works, there is much to be desired in terms of performance. In order to have a

reasonable runtime, I had to reduce the number of words that the program searched for. Lastly,

my project could always be expanded upon in regards to the number of ciphers included. Given

that there are virtually an infinite number of ways to encrypt a message, it makes the number that

I implemented seem relatively insignificant.

Conclusion

 Overall, writing my program gave me a multitude of learning opportunities ranging from

learning a new language to building a program with a user interface to learning how to approach

decryption algorithms. The program provides users a basic tool to automate amateur

codebreaking in a straightforward user interface and overall gave me a better understanding of

ciphers, encryption, and decryption techniques.

Combs 7

Works Referenced

Novig, Peter. The 10,000 most common English words in order of frequency, as determined by n-

gram frequency analysis of the Google’s Trillion Word Corpus. Natural Language

Corpus Data: Beautiful Data. Linguistic Data Consortium and Google, 2009. Accessed 5

November 2021. Dataset.

