Bonino 8

Joe Bonino
CS 480
26 April 2017
Connection: An Attack on Consumerism
How it was Born
	Connection, this is sub standing in our nature. Its underlying power drives our hobbies, creativity, and brain chemistry. Whether you’re listening to your favorite jazz score or deriving a trig function. You may be connecting by indulging in the mind of an artist or linking elements of the universe together. The act of acquiring knowledge is literally connecting neurons while wisdom is connecting knowledge. You’re always connecting. Connection is a powerful substance and my project aimed to encapsulate its influence.
	A little background about this project started over a year ago when reading E. O. Wilson, The Social Conquest of Earth. In the last chapter, he mentions the HIPPO acronym. We must conform to eliminate Habitat destruction, Invasive species, Pollution, human over-Population, and Overharvesting to sustain a biodiverse world and prevent climate change. My project is going to try and eliminate one of these. Pollution seemed to be the best candidate as that’s something I can fix in my own home. The best way to not pollute was to not buy items and become a minimalist. This means having a few tangible items and living more sustainably. I now found my scope and was going to attack consumerism.
	It’s a lot to ask for people to stop buying items as it’s the most popular hobby of the American citizen. Anti-consumption is simply ignored so I skipped past this. Instead I would use the power of connection to put people back in the biological web. How do you do this? A consumer must be directly connected to when he/she buys a steak or frozen pizza. To be connected, one must know what they are supporting when they buy this item. This is a big task and it must be simple to be used efficiently.
 I will provide a way for a consumer to be connected to a product on three degrees: environmental, humanity, and personal health.
An example is when you buy a steak from the store. You may find out that “cows produce more greenhouse gases than cars” (Environmental), “the farmers are on an unethical outrageous contract with Walmart” (Humanity), and “red meats aren’t the best for you” (Personal Health). You then put that item down as you don’t want to support that and pick up a grass-fed organic steak. You see that “the workers are paid great” but “grass-fed cows require much more grassland and the fences prevent animals from migrating”. You then are turned off from beef and don’t eat it anymore. This situation happened in minutes and a consumer will never look at steak the same again. That’s my motive.
Where does this information come from? It comes from people who care about the environment, humanity, and themselves. How do you keep all this information reliable? An anonymous democracy must be in place with everyone participating to have no incentive but to better the world. If a piece of information is supported by the masses, it is most likely reliable. A listed source may be provided as well. A good example of this is Wikipedia. At this point, I steered away from thinking about technology to use. Now the design must come into play.
[image:]The Design
	My first step in designing was to define the system boundaries. I find that a piece of paper and pencil are the best tools in the design stage. A very simple outline made me realize the actors of the system. A client must be in play as well as three different users: user, privileged user, and admin. This seemed very basic to me and I had no idea how much work it was going to be to design back-end and front-end systems. I then continued to make use cases to get an idea of the objects that needed to exist to produce a harmonious system. These events seemed so simple and I again underestimated my work load by ten folds. I thought I just needed to add, remove, edit, and replace consumer items and have them display to the client. User management seemed to be a breeze as well.
[image:]	While I continued down the happy path, I drew a simple diagram of the system in a non-computer science analogy. I described my system as an area of land surrounded by a fence. Service providers were represented as stick figures and gold represented the precious data of my system. I identified a client, translator, messenger, officer and a gold mine (data). The client would simply talk to the translator for any system request. The translator was responsible for all input and output of the system. He understood multiple languages and would parse a client’s message and hand a request to the messenger. The messenger would take care of the request by talking to the officer or potentially anyone in system. The officer would decide if a client had appropriate privileges to add/edit/remove data. Everyone could read the data/gold. This picture made the system way to simple and I again had a lot more work than I thought. This was okay though because I had a good idea of what I was looking for. I then proceeded to make my proposal where I would identify many more errors with my design.
[image:]	Creating the rubric for my senior project showed me a lot of insight. This is what I would be graded on so it must be very accurate and detailed. It was very hard to predict problems down the road but I thought I did a good job at the time. Once again I created a lot more work for myself. The “Consumer Item” and “Review List” objects were born first to the intangible universe. The translator object was next.
[image:]I now look back and realize this object was not needed as the client already communicated elegantly with the Seaside framework. That was the only language it knew however. I also didn’t realize that a Seaside component/app could not be stored on the client’s side which killed a whopping 25 points for me. The Messenger/Request object was also not needed as that is simply just a message in Smalltalk. An offline mode was also not possible with Seaside. So more points out the window. As I submitted proposal for review, I started working on CRC cards to describe my system more in depth..

	Designing CRC cards made starting a lot easier. I identified what objects collaborated with what and which objects needed to exist for others to work properly. The designing phase never died as I worked on the system. Many times I would redesign how certain objects worked and rewrote lines and lines of code. I noticed code was like poetry and rewriting lines of a poem sometimes made it better and sometimes made it worse.

Technology
	To start, I identified the smallest scope and the system. This was the “ConsumerItem” object. Now what tools to make this system live? I recently fell in love with Smalltalk so decided to go with this. The reason for choosing Smalltalk was that I didn’t need to learn multiple languages. This was a very good decision as I coded everything entirely in a Pharo image. I decided on using Pharo because it contained an All-In-One Seaside image which I needed to create my client. The Seaside homepage also provided a fantastic book to guide me in my quest to understand Seaside. I thought it would be a breeze to design my client but I forgot that I mentioned it was to be responsive. Ill touch on this later in my paper. The seaside image also included Zinc which I used to host a webserver locally. This was VERY convenient. Now it was time to get my hands dirty.
Construction and Testing
	The first day of construction was great but It was a late start. Over a month had passed and I had nothing to show for it but paper. To get my head straight, I started off listening to some environmental Marvin Gaye and Kimya Dawson. When jumping back into Smalltalk, I realized that I didn’t remember how to efficiently code. I decided on sitting down and completing the “ConsumerItem” object which was later renamed to just the “Item” object. What seemed to be a 1-2 hour task ended up being a 4-5 hour sweaty caffeinated sprint. This payed off tremendously down the road as I set up many error classes to signal in case of an error. This enforced my defensive coding style. These were easily organized in my test suite. By the end of the day, the “Item” and “Review List” objects existed but were over complicated not orthogonal. I would later rewrite these classes twice over to simplify them.
	I was very lost in the next couple weeks on construction. This was definitely the hardest part of the project. My system was so vast that I didn’t know where I would start next. I would stare at my code and fix snippets for 5 hours and notice that I was spinning my wheels the whole time. I was constantly relearning my system and even moved backwards at one point. This wasn’t working and I was advised to start on the client side to give myself some gratitude (The green test-passing lights weren’t doing it for me!). I then started constructing my client.
	This was great advice as I needed to learn an entire new framework. Learning Seaside was easy but very tedious and boring. I was regurgitating lines of code to create buttons and navigation bars. This was something I had to push through but paid off once I could see my “Item” object on a web browser. Learning Seaside toke about 3-4 weeks and then another couple weeks until I felt comfortable with it. I practiced and practiced designing some of my pages until they looked good enough for me. I could now see an “Item” object.
	At this point I discovered that Seaside did not provide an encapsulated client but played more as a RESTful service. It provided a web browser with appropriate HTML, CSS, and JavaScript to display and that was it. That is where I lost 25 points as I couldn’t implement an offline-mode like I had planned. My intention was to have some sort of App stored on a client’s phone that could be used to look at one’s history, shopping list, etc. This was not how Seaside was designed but I didn’t understand this until weeks down the line. What I did incorporate was an app shell that contains all of my Seaside components. With this in play, you only need to know of one component to access the rest. Anyways it was time work on the backend of the project.
	I was going to use two different ways to store “Item” objects. A simple dictionary and some sort of binary tree. The simple dictionary was used for a quick look up by using the UPC code of an item as a key. The binary tree structure was to exist to browse items by categories. I created the “UpcStructure” object that was to be a singleton with a dictionary. Instead of having a single instance, I just added all the methods to the class side of the object. This may be bad practice but I was keeping things simple. This object went up fairly quick and I discovered another pattern to my system.
Any data structure in my system used the REST commands GET, PUT, POST, and REMOVE (delete). This made my life a little easier and satisfying. These methods almost always required some helper methods to determine if an object was already in the database or a valid object. Another pattern arose when helper methods were placed in a method category called private.
	Many more days of coffee fasts were in the future as only basics were in way at this point. The “UserStructure” toke 1-2 weeks to create as it required “User” and “UserProfile” objects to exist. Objects with “Structure” in its name were used by calling its class. This included “UpcStructure” and “UserStructure”. These two structure were responsible to validate an object before adding/removing/editing. Error handling existed in these classes as well. When defining the objects for these structures to hold, I noticed constants popping into my view. A username was to be 4-20 characters, pin 8-20, item summary length 10-3000 and so forth. These constants were placed in the class side of the object that is responsible for them. “User” keeps track of usernameMin & usernameMax which simply returns an integer. All error checking and validation relies on these methods therefore I may change the constant in this one method to have them apply across the entire system. This proved very useful as a user’s pin was originally a minimum of 4 characters. After reading an enlightening article on password rules, I wanted to change the minimum to 8 characters. I did this and ran my tests and everything worked great!
[image: C:\Users\jbonino\OneDrive\Pictures\Camera Roll\Black Droid Turbo\IMG_20170409_203649840.jpg][image: C:\Users\jbonino\OneDrive\Pictures\Camera Roll\Black Droid Turbo\IMG_20170403_074438741.jpg]	This was a turning point in the system. There was a perfect balance of work done and not done. I had a very good overall view of the system. I now needed to add all the functionality of the objects coordinating together. There was much to do so I decided to put a bunch of sticky notes on my window of simple tasks. The window was split into three sections comprising of backlog, in progress, and completed. I simply went through my proposal and wrote all the items worth points on the sticky notes. They were ordered by priority from left to right determined by how quickly I could implement and how much points each were. This was EXTREMELY helpful as I could take a couple sticky notes with me to the library and focus on just these simple tasks. This was definitely my most efficient phase of the viscous senior project cycle. After writing these out, I noticed there was a major feature I was missing! Responsive design.
[image:][image: C:\Users\jbonino\OneDrive\Documents\School\Senior Project\unresponsive.png]I had already developed all the Seaside components for my pages. It worked but was far from responsive. This was a big problem and I needed to rewrite all these pages with bootstrap implemented. Boostrap is a simple styling library that allows you to make responsive pages. It took lots of research to find the right repository for Smalltalk. After learning, I rewrote all my pages and was very satisfied with the outcome. I could use the mobile debugger in chrome to test my responsive design. A MVC model was adopted for the client.

[image:]A MVC model was easy to incorporate because I was using Smalltalk. All Seaside components had their own model that would be supplied to them upon creation. The components themselves are the views. Simple text inputs and buttons worked as the controller for the user. The controller would send information to a private helper method that made sure that input was valid. This method was called isInputValid and varied between views. If input was valid, it would manipulate the model. If it wasn’t valid then the client was informed of a specific error. This was easy to create as all my models were already signaling errors. Therefore, the isInputValid method simply caught my errors signaling and displayed them on the view if they existed. If they didn’t exist, it displayed a success message! This method soon coated the whole system and this was a thanks to a defensive minded approach.
	User management also turned for the better when I started to really understand Seaside. When someone loads a Seaside application in their browser, they are also provided a session. This session can be used to store temporary data as sessions expire at a set time. I simply made a subclass of the WASession object. I named this SeniorSession and it contained a “User” object that was not initialized. If a user wants to login in, they provide SeniorSession with a username and pin. SeniorSession will then coordinate with system to see if pin is correct and user exists. If everything is well then SeniorSession will contain the appropriate “User” object. The session can be accessed from any Seaside component by simply sending it the message ‘self session’. I could determine if a user is logged in or not very easily with sessions. This was a very generous feature!
	A “User” object was responsible for his/her own history and personal data. All this information was stored in the “UserProfile” object. My intention for this object was to have a user encrypt their “UserProfile” before sending to server. The most powerful player in my system would not be able to data mine even if they wanted. This provides true privacy to users and they won’t feel used. This wasn’t possible as Seaside doesn’t provide a standalone client application. It relies on server to constantly make requests to models and fetch pages. I still created this object but the underlying reason as to why it existed is not in show.
Complicated algorithms? nah
	The “Review List” object was my most complicated data structure. The only reason it was the most complicated was because it wasn’t just a plain dictionary. This object used a dictionary and an ordered collection. Each review kept track of its index as the reviews were to be sorted in specific ways; Top, Hot, New, etc. I later discovered that this was more of a feature for the Viewer but kept the function around anyways. The dictionary key was universally unique identifier that belonged to an instance variable of the Review. The UUID was easily created as the class already existed in Pharo.
What I learned.
	I learned that I really didn’t know anything about designing a system. I heard everything from lectures but never applied it. Only after practicing and applying methods did things start to click. The idea of object oriented design showed its true brilliance as the system was dancing together. I thought I knew so much about computer science but only really knew general practices. I understand that’s what was intended. College taught be how to think and apply computer science to the world.
	After learning Smalltalk, Seaside, Bootstrap, and a little jQuery I realized just how flexible my brain was. Learning new frameworks was easy as I found patterns in each language that pointed to a much bigger picture of software programming. The semantics was the only difference. The “real world” is full of new technology and languages so I was no longer frightened of learning these.
	I learned Smalltalk very in depth. There is zero to little documentation on Smalltalk repositories that I noticed fairly quick. You can’t simply google an error and get an answer. It wouldn’t help either as 99% of the errors you receive is MessageNotUnderstood. Therefore, you must immerse yourself in the system and understand every aspect of the objects in play. There is no helping hand but to read comments and code. This seems like a very bad way to learn but it was the opposite. It was a lot to take in at first but now when I code in Pharo, I am not distracted by a web browser or forum to look up answers. Everything lives in the Pharo image alongside your system.
	Debugging was a major contributor to time. Smalltalk made this very easy as you can propel your system forward from the debugger. You can edit/add/remove lines of code to your system as it is alive and crawling. You may inspect any attribute you want to see its value or an objects method dictionary. The IDE represented the system in its true nature, not a linear set of commands from top to bottom but a logical being.
	During the months of the system development, I found my psyche was continuously being bombarded by the project. How do I keep user’s privacy intact? Is it possible to host this in a decentralized fashion? What’s the best way to determine the user is the user? Many more questions where always popping into my head and at first I was okay with this. Once the system was underway, design questions kept derailing my brain. It became irritating and I couldn’t enjoy a nice hike without the overhead of this project. People call me Joe Chill because I hardly get stressed out. This was by far my most stressful semester. I learned to deal with it by setting time aside for my project. In my free time I learned to turn it off. I was actually a lot more productive with this mentality. I no longer dreaded working on code but enjoyed it.
What I would do different
	If I were to do my project over again, I would focus on the back-end of the project. This was the original intention but I ended up spending 70% of the time working on the front-end. Therefore, the overall functionality of the system is very minimal but the user experience is great. The frontend consisted of learning Seaside and bootstrap which was a big step in the project. It took a while to be comfortable in each of these which could have been time added to the back-end. If more focus was on the back-end, then I would have just developed a RESTful service. This would require coordination with an Apache server. If I did this, the client could be written in any language.
	I would have liked to use an actual server to play with Apache. This would have been very practical for future Joe as it must be learned eventually. Pharo has its own web server software called Zinc. I could simply visit my localhost page from a browser to see my Seaside components. Using an Apache server would have required extensive knowledge. I did some research and found that there is a way of having Apache and Seaside communicate properly. This was a little out of my scope but wish I made it happen.
Conclusion
	This project propelled me into another realm of computer science. It blew my mind how much I didn’t know. It was very exciting to start learning new material that I could apply to create my ideas into a working system. This class/project has taught so much more than a lecture could have. It was a very good way to learn and glad everyone must complete it to graduate.
[bookmark: _GoBack]To be so excited about coding was new to me and has opened my eyes to computer science. I am enthusiastic to finish this project after graduation. Eventually this system will deploy as a solution and not a financially incentivized corporation.
image4.jpeg

image5.png

image6.jpeg

image7.png

image8.png

image9.png

image1.jpeg

image2.jpeg

image3.png

