
 SEQ CHAPTER \h \r 1Jacob Feindt

Advisor Dr. Andrew Poe

Northern Michigan University

CS 480

December 2, 2003

Mapping Automation
In the world of pre-construction land surveying, topographical mapping reigns as one of the most important functions of the professional land surveyor. The need for automatic generation of topographical maps has arrived with the advent of electronic data collectors and readily programmable mapping programs. In the past, topographical maps were generated by hand by plotting each individual point, and then by drawing the corresponding lines, curves, arcs, symbols, and text. Drawing maps by hand was a slow process and because they were inked, also difficult to fix mistakes. Today, almost all drafting is done through some sort of Computer Automated Drafting (CAD) program. However, suitable automation for survey specific mapping has yet to come to maturity. One of the major reasons for a lack of suitable software currently resides in the lack of standards. Every state’s Department of Transportation may use different CAD packages (e.g. CAiCE and Microstation) which impose limitations in drawing. For instance, since Microstation has a limited number of drawing layers (63) to work with, many of the separate layers which might be used must be condensed to only 63 (layers are like transparent sheets of paper, allowing users to make certain sheets visible/invisible). Additionally, DOTs often require use of their specific block symbols, line colors, etc. The

restrictions in CAiCE are even greater as it is a highly specialized software package for highway design. Due to the lack of currently available survey specific map generation software and the highly specific needs of survey offices, I decided to create a custom application built to specifications provided by Advanced Geomatics. Advanced Geomatics is a land surveying office which creates topographical maps for engineering offices across the state of Michigan, as well as directly and indirectly for the Michigan Department of Transportation.

At the request of Advanced Geomatics, AutoCAD was the CAD program of choice to create the application to work with. AutoCAD has several programming language interfaces which may be used by developers. C++, AutoLISP, Visual Basic, and AutoCAD Development System (ADS). AutoLISP and ADS are both legacy programming interfaces which AutoCAD is trying to phase out for all but minor programming. ADS is AutoCAD’s first C programming environment, but has been phased out by the introduction of ObjectARX, a C++ interface to AutoCAD. Using the ObjectARX environment seemed an obvious choice, as it provided a programming environment I was familiar with (C++) and offered much greater power than Visual Basic or AutoLISP.

In order to complete this software, it was necessary to learn as many of the drafting needs of the company as possible, to provide as much automation as possible in order to increase the turn-around time from receiving field data to creating a ready and complete topographic map. Currently, Advanced Geomatics uses their own field coding methods for topographical mapping. When a surveyor uses a total station to measure an angle and distance to a point, a specific code description must be entered, such as a “90" to represent a telephone pole, or a “12" to identify concrete (See Figure 1 for the full code list). Additionally, line codes may be placed in front of number codes. In order to ‘draw’ a concrete walkway in the field, the code “B*12*WALK” would be used. The code translates to “Begin a line representing concrete with the description “WALK”. The line will then be completed by a series of “C” (continue) points as well as “S” (spline) and “A” (arc), and finally an “E” (end) or “EB”(Finished with a line from the End to the Beginning). A sample of typical raw field data is shown in Figure 2. Once this data has been collected in the field, it is run through a program called Equalize (created by Jonathan M. Purdy) to check for any field coding errors, and then look up the appropriate symbols to use from a database. Different symbols are required for different clients (mainly the Michigan Department of Transportation). The information is then broken into two files, a line file, and an object file. Both files also include text descriptions which must also be drawn as noted by “^” in the raw field data. Once these files have been generated, they must be read in by Topo_All, the ObjectARX AutoCAD application I developed. Topo_All will then read in all the data from the files, ask the user a series of questions in order to further improve total automation, and generate lines, arcs, splines, fit polylines, block symbols, and text. Topo_All will query the user for things such as the rotation angle to use fo inserting blocks, the scale factor for blocks, text scale and rotation, text style, text layer, and more. Since Topo_All is running in the AutoCAD environment, specific AutoCAD functions must be used to get user input rather than a simple “cin >> int” statement. Once the information is gathered, Topo_All will begin processing the line file, creating line entities between “B”, “C, and “E” codes. Splines and fit polylines require slightly more work. A spline is a type of best fit curve through a set of given points. All points which are to be included in the spline must be changed into an array of AutoCAD points, and then the array must be passed into the create spline function. Creating an ARC entity requires the center point of the arc, reference vector, radius, and the start and end angles. Rather than trying to calculate this information from the three given points of an arc, the ObjectARX environment also includes a set of geometry classes. The geometry arc class only requires the three points to draw the arc through. Once the geometry arc has been created, it may then be queried for information regarding the starting angle, reference vector, etc. to create the new arc entity. After the line processing has finished, Topo_All will begin to process the objects. Objects only require an insertion point, scale, and rotation. When I refer to objects, I am referring to points which require symbols. AutoCAD stores pre-defined symbols created by Advanced Geomatics as ‘Blocks’. A block is a combination of lines and text which have been saved as a single entity. Rather than creating all the lines used in a block, AutoCAD actually creates a ‘Block Reference’. Topo_All must look up the block symbol to see if it exist, and then retrieve the block’s unique object ID. Next, a new block reference entity is created, using the scale, rotation, insertion point, and block specified. Since text is not stored in an individual file, both the object and line file must be parsed a second time to find any text which is required to be drawn. Text is drawn in a similar fashion to creating lines. A new text entity must be created, with the text to write and text style. Text also requires a rotation, scale, and specific layer. Drawings may be produced using feet or meters as the drawing unit. However, in a metric system, scales are known as ratio scales (e.g. 1m = 250m) and in an English system, scales are known as an engineer scale (e.g. 1in = 20ft). Therefor, the user must be queried about which type of scale is being used, and then convert the scale given into AutoCAD drawing units.

Topo_All also includes the ability to allow users to generate only specific data (e.g. lines only, text only), as well as the ability to create a break line only file. Break lines are places where contour lines need to stop due to a vertical surface such as a retaining wall. Currently, the AutoCAD user would have to separate all the lines which use a “D” as part of their code description. Creating a break line file with Topo_All simply involved a slight modification of the line drawing function to plot only those lines beginning with a “BD” (Begin Discontinuity). Users may undo any part of the drawing generation individually (lines, text, or objects). This greatly improves efficiency when attempting to decide on the rotation angles for text or objects. If a given rotation does not fit as planned, the user may quickly undo the blocks, and then re-generate them at a new rotation angle they specify. Similarly, if text appears too small, it may quickly be removed and re-generated at a new scale.

Learning to use the ObjectARX interface for AutoCAD required a fair amount of time. AutoCAD uses a series of databases to organize and store all of the drawing information. Additionally, as noted by the name, the environment is organized in to an object hierarchy. For instance, a base class called entities exist. Extended from this is the class curves. A line inherits properties from both the curve class, and the basic entity class. The large hierarchy occasionally made it difficult to determine what properties might be available for a given entity and often required searching all parent classes of that entity. In order to create a line, a new line entity must be created. Next, the line must be inserted into the AutoCAD database, and then have a ‘close’ function called in order to allow AutoCAD management of the memory for the new line entity. The direct access to the AutoCAD drawing databases allows programmers very high levels of control over the drawings they are creating. It also leaves the programmer with much more responsibility of ensuring proper data is passed into tables and that tables are closed properly to ensure proper functionality. Generally, the ObjectARX reference guide does a very good job of specifying if memory management issues may occur, and warning programmers to be sure to close out entities as soon as possible to avoid unintended memory issues. The reference lists for each class both the constructor and destructor functions, additional query or set functions, header files necessary for the class, as well as the class it inherits from. Using this information, it is generally quick to lookup a class and trace its inheritance to see what other functions are available for that class.

Creating an Undo Method was one of the more time consuming issues I was faced with. AutoCAD has built in transaction managers which keep track of all database transactions in order to allow the undo of transactions. However, using this function would require the use of some sort of marker in the transaction manager to ensure that only the commands issued by Topo_All were undone. If a user were to issue the “PAN” or “ZOOM” command to move to another area of the screen to inspect how the drawing generation completed, then those commands would then be recorded in the transaction manager. Additionally, the possibility of just erasing all the newly drawn lines, text, or objects does not always exist. Often data is brought into a drawing pieces at a time or on top of other drawings, which would mean a user would have to try to guess and hand select everything which was just created by Topo_All. Finally, I realized that the AutoCAD database generates a new Object ID, which is unique for every object and entity created. I then used AutoCAD’s built in Array class to make a dynamic array, which operates similar to a stack (the array actively increases and decreases the size of the array, as well as moving data up or down the array when new items are inserted or deleted). Topo_All now records every new Object ID generated after each entity it creates, and stores them in a specific line/object/text ID array. When a user wishes to undo the lines, every line object ID is then pulled out of the line array and then erased from the database. Users may not, however, undo lines or objects once the drawing has been closed and the program removed from memory. It would be possible to write the ID’s to a file, but this seemed unnecessary.

Aside from a few minor programming issues, the writing of the Topo_All program went smoothly. Occasionally it was necessary to backtrack the way a section of code was written in order to accommodate features as I tried to implement them. New features I plan to create include the ability to control line colors through an additional field in the line file. Normally the line color is set according the layer it is on. However, when creating drawings for MDOT, multiple line types may end up on the same layer, and therefor the same color. An AutoCAD draftsman must currently change each line to the specific color as required by MDOT. I would also like to include more extensive text auto-alignment. Currently, all text must be rotated to the single rotation specified by the user. It should be possible to try to rotate the text to a ‘best fit’ position by seeing if it is overlaying a line or object, and then adjusting its rotation accordingly. I would also find it interesting and helpful to visit other land surveying offices which complete work for DOTs, or offices which simply create topographical maps, to see what methods and software they use in the drawing process.

Working on the Topo_All project was my second large software development project. I previously created an accounting package to meet the specific billing needs of Advanced Geomatics due to the Michigan Department of Transportation’s highly specific billing requirements. I learned from developing these two large pieces of software that initial planning is extremely important to avoid having to re-program large sections of code in order to accommodate new features. Furthermore, writing code which is flexible is also very important. Finally, commenting code will make you extremely happy when you have to debug you wrote two months to two years later. I curse myself often for not commenting the code in the accounting software I wrote. I spend hours trying to decipher and trace code before I can even begin to look for problems. Topo_All has been heavily commented, leaving a very easy to follow program. Programming for a business is also much different than programming for a class. When programming for a professor, making small bugs and mistakes do not lead to major problems. However, when people are depending on your software to operate, and operate properly, much more care must be taken. Creating a drawing with incorrect information has the potential to lead to major design problems when an engineer tries to use the information. Overall, the top to bottom design and programming of software provides a lot of insight for the future, insight which cannot be learned in the classroom or from a book, but is very necessary when leaving college and stepping into the real world.

	

Field Codes
1
Property Corners - Existing

2
Property Corners - Set

3
Traverse Point / TOPO Sta.

4
Section Corner

5
Quarter Corner

6
Computed Property Corner

8
Bench Mark

9
Miscellaneous

Linework
10
Gravel

11
Bituminous

12
Concrete

13
Water Line

14
Structure

15
Brush Line

16
Fence Line (note)

17
Railroad Tracks (C.L.)

18
Ditch C.L.

19
Road C.L. (note mat’l. type)

20
Ground (description)

21
Property Line

22
Tree Line

23
Shrub Line

24
Parking Stripes

25
Parking Bumpers

26
Guard Rail

27
White Lane Line

28
Yellow Lane Line

29
Seeded

Features
30
Deciduous Tree (note size)

31
Coniferous Tree (note size)

32
Bush

33
Swamp

34
Fence / Guard Post

35
Soil Boring

36
Sign (identification)

37
Traffic Pole

38
Mailbox

39
Parking Meter

40
Stump (note size)

41
Rock (note size)

42
Flag Pole

43
Traffic Light

	Utilities
Sanitary
50
Manhole - ID?

51
Manhole - Sanitary

52
Cleanout

53
Manhole - Combined
Storm
60
Manhole - Storm

61
Catch Basin - Square

62
Catch Basin - Round

63
Culvert Opening - No H.W.

64
Culvert Opening with H.W.
Water
70
Watergate Manhole

71
Water Valve Handhole

72
Fire Hydrant

73
Well (note size)

74
Sprinkler Head

75
Water Meter

76
Water Line Marker
Gas
80
Manhole - Gas

81
Gas Valve Handhole

82
Gas Line Marker

83
Gas Vent Pipe

84
Gas Meter

85
Monitoring Well
Electric
90
Utility Pole

91
Light Pole

92
Electric Pole Only

93
Utility Pole With Light

94
Guy Anchor

95
Guy Pole

96
Manhole - Electric

97
Electric Box

98
Electric Line Marker

99
Electric Handhole
Telephone
100
Telephone Pole

101
Manhole - Telephone

102
Telephone Pedestal

103
Pay Telephone

104
Cable TV Box

105
Telephone Line Marker

106
Cable TV Line Marker

107
Cable Manhole

108
Metro Media Manhole

- Figure 1 -

- Figure 2 -

Point#* Northing* Easting* Elevation* Description

					

698*731517.79665*1761459.26716*584.60*BD 14 ^TOP WOOD STEP

699*731516.22885*1761463.97253*584.60*C

700*731548.84780*1761479.74247*601.07*C ^TOP WOOD STEP

701*731554.68415*1761482.51916*601.08*C

702*731556.76453*1761478.18817*601.17*C

703*731550.60779*1761475.22133*601.07*EB

744*731580.31320*1761615.06771*604.37*B 98 ^ELEC. PAINT

745*731576.97590*1761626.16006*603.96*C PAINT

746*731571.38387*1761651.49435*604.27*C PAINT

747*731565.75671*1761677.87620*604.86*C PAINT

748*731562.53128*1761695.48535*604.95*C PAINT

749*731560.07848*1761733.05644*605.09*C PAINT

750*731557.91429*1761770.53535*605.08*C PAINT

751*731557.64295*1761794.27636*604.87*E

752*731570.47169*1761607.25735*602.92*B 98 ^ELEC. PAINT

753*731576.97320*1761588.33925*603.05*E

754*731577.55316*1761588.09401*603.17*90

755*731574.42413*1761601.24328*603.25*94

