
1 of 11

A Remote Debugger For Modtalk

A Senior Project by Josh Fridstrom

Northern Michigan University, April 2015

2 of 11

Contents

About Modtalk.. 03

Code Organization.. 03

The Bytecode Interpreter... 04

Command-Line Debugger...04

Remote Debugger...07

What I Learned... 09

Technologies and Libraries Used... 09

Grading.. 11

3 of 11

About Modtalk

My senior project is to write a debugger for Modtalk. Modtalk is a compiler tool-chain for

the Smalltalk programming language which adds support for compile time namespaces. Modtalk

compiles Smalltalk source code, stored in modules, to an in-memory model. A builder tool runs

across the model generating executable code in various forms. Prior to my senior project, we

supported two target runtimes. The first of these is a threaded interpreter runtime where each

interpreted operation (op) correlates to about one abstract machine code instruction. The second

supported runtime is native machine code. That's right, we can compile directly to native x64

machine code.

Code Organization

The code is organized into three separate code domains. The first of these is the Modtalk

virtual machine. The vm is written in C and lives in a git repository. The virtual machine is where

the different runtimes are written that execute compiled Modtalk code. Additionally, the vm handles

various primitives that Modtalk programs can use. These include, but are not limited to, small

integer arithmetic, basic array operations, and IO. I worked in this code domain quite a bit by

adding a new runtime, adding several primitives for various features, and writing a bunch of code

that handles socket IO for the remote debugger. The second code domain is Modtalk code. This is

Smalltalk code that is stored into modules that are compiled by the Modtalk compiler tools and built

into a mixture of C code and assembly code that can be made into a single executable. I wrote much

of the debugger code in the context of a Modtalk Subsystem which is akin to a Java package or a

Python module. The Debugger Subsystem contains definitions for a Debugger Class as well as

many other classes used by the Debugger objects. Instances of the Debugger Class control the

execution of the process being debugged. The Debugger Subsystem is meant to be included with a

program that you wish to debug. The existence of the Debugger Subsystem will allow the user to

4 of 11

take advantage of the Debugging features. The last code domain is Pharo Smalltalk. The Modtalk

IDE and compiler tools are all written in Pharo Smalltalk. I wrote the remote debugger client in

Pharo Smalltalk so that I could integrate it with the IDE and use the program model built by the

compiler tools. My remote debugger is written in such a way that you could write a program in any

language (so long as you can open a socket) and debug a running Modtalk program.

The Bytecode Interpreter

The first step to creating the debugger was to add an additional target runtime, a bytecode

interpreted runtime. I needed a bytecode runtime to make it easy to set breakpoints. More on that

later. I worked in two separate development domains to make this work. First, I needed to extend

the target builder that runs across the program model to generate the appropriate bytecode

sequences to be executed. This was done in Pharo Smalltalk. Second, I needed to write the

interpreter to execute the bytecode sequences. This was done in the Modtalk vm. Developing the

bytecode interpreter was pretty straightforward. Having a threaded interpreter made it easy to get

going. Each byte corresponds to a single op or a grouping of related ops and the arguments for the

ops were encoded in the following byte or two. So, I simply mapped bytes or pairs of bytes to

threaded ops which we already had debugged and working.

Command-Line Debugger

Once I had a bytecode interpreter, I was able to get started on my debugger. When a program

is run with the Debugger Subsystem, the Debugger Subsystem immediately takes over and goes

into a print/eval loop. This allows users to enter commands via a command line interface. At this

point users can set breakpoints run the program. When the run command is issued, the Debugger

Subsystem lets the program continue executing as normal. When a breakpoint is hit by the running

program the current running process is suspended, an instance of the Debugger class is created and

5 of 11

a separate debugger process is created and scheduled. In this new debugger process, the Debugger

object goes into another print/eval loop where more commands can be given by the user.

Commands that can be issued in this state include continuing program execution, requesting context

information such as temporary variables or methods arguments, and dumping the stack.

Setting breakpoints is one of the most important features that I needed to have working for

my debugger. Users can set breakpoints on message sends within a method. Every message send

corresponds to a send bytecode in the compiled bytecode sequence for that method. Setting a

breakpoint then becomes a simple task of replacing the send bytecode with a special breakpoint

bytecode. The debugger keeps track of which methods have breakpoints and what offset into the

bytecode sequence the breakpoint is set. When the program is executing, instead of reading the send

byte and performing a send operation, the breakpoint byte is read and a special breakpoint operation

is performed. The breakpoint operation is what does the suspension of the current running process

and creates the new debugger process as was mentioned earlier. When a continue command is

entered by the user, the debugger process terminates and the previously running process can be

scheduled to again.

Figure 1: CLI Commands

Figure 1 is a table describing the commands available to the user to control program

execution, set breakpoints, and access arguments and temporaries. Allow me to explain them. In

Command Arguments Desciption
break set Subsystem.ClassName methodName byteIndex sets a breakpoint at byteIndex in a method
run
continue
into
over
dump [n] show stack trace back n frames or back to start
arg stack frameIndex index returns argument found index off the frame
arg env frameIndex envIndex index returns argument found index into the envIndex env at the frameIndex frame
temp stack frameIndex index returns temporary found index off the frame
temp env frameIndex envIndex index returns temporary found index into the envIndex env at the frameIndex frame

6 of 11

order to set a breakpoint, the debugger needs to know what method to set the breakpoint in as well

as where in the method to do so. The Subsystem.ClassName argument specifies a fully qualified

class name. Modtalk programs are composed of Subsystems, in which classes are defined. Class

names must be unique within a subsystem, so the subsystem name and the class name together will

correspond to no more than one class. Once the class is found, the method can be looked up by its

name. The final argument, the byteIndex, specifies how far into the compiled bytecode sequence to

place the breakpoint as explained in the previous paragraph. “Run” and “continue” merely terminate

the debugger process and let the program continue running. “Into” performs the send that is

currently halting the program and stops at the next available send. “Over” performs the send and

halts at the next available send within the method currently breaking in. The “dump” command

prints a stack trace. The next commands are used to access temporary variables and arguments to

methods. The reason there are four commands instead of two is because Modtalk supports full

closures. We would like most arguments and temporaries to be stack allocated because stack

allocations are fast. However, sometimes a closure is created that will outlive the current stack

activation. Variables referenced by this closure must be allocated in the heap. When a closure is

created, it has a heap allocated environment where temporaries and arguments are allocated.

Because some argument and temporary variables are stores on the stack and others are stored in

heap allocated environments, and there is no way to tell the different once a program has been built

to executable code, four different commands are required to access them. Sometimes closures are

nested inside other closures and heap allocated environments are chained together. The envIndex

argument says which environment in the chain to look in for the argument or temporary.

The Debugger Subsystem includes a Debugger class which describes the behavior of

debugger objects. A debugger needs to know about the process it is currently debugging. Modtalk

processes have different representations. The state of the registers for each process is stored in C

7 of 11

memory. Prior to my project, Modtalk process objects could be created and the state and various

other information about the process could be accessed and changed; however, the registers lived in

C memory and could not be directly accessed by a Modtalk program without going into a C-

primitive. I needed to be able to access the registers so that I could unwind the stack, access

arguments and temporaries, as well as execute code on the other process. Instead of creating

primitives for each different action that I needed to perform on the registers, I decided to objectify

them so that I could manipulate them from a running Modtalk program. This turned out to be really

useful as it gave me a simple way to access all the data that I needed as well as control the

execution of the process being debugged.

Once I had a mostly usable command line debugger, I realized how agonizing the experience

of using it was. You have to know a lot about how Modtalk activation frames are laid out in order to

use the debugger and you have to somehow determine what variables are stored on the stack and

which ones are allocated in the heap. Originally, I had planned on writing a decompiler to show the

user the contents of methods so that they could determine which arguments and temporaries were

stack allocated and which ones were heap allocated, but then I realized that it would be much easier

if I had the program model that the executable code is generated from. The program model contains

information like the names of variables and whether those arguments live on the stack or in the

heap. Instead of writing a decompiler so that the user could figure out that information, I decided to

jump right to the remote debugger so that I could use the program model to calculate the

information for the user.

Remote Debugger

The remote debugger still has the debugger subsystem as a part of the program under

development just like the command line debugger. The difference is that when the debugger process

8 of 11

is ready to accept the next command, it will now read the command from a socket instead of from

standard input. I spent several days designing the state machine for the remote debugger. It has gone

through several changes since then, but once it was ready to implement I had once problem. We

didn't have sockets in Modtalk yet. Instead of writing fully objectified sockets and having to worry

about host IO signals and all that, I decided to do the easier thing. When a program is launched for

debugging, a pthread is started which creates a socket and waits for a debugger client to connect.

Meanwhile the Modtalk program continues execution as normal and just like before, the Debugger

Subsystem takes control and waits for the next command. This time instead of reading from

standard input, I have an inbox queue that the Debugger Subsystem will wait for something to

appear in. The socket thread, in the spawned pthread, will read serialized commands from the

socket, parse them, and store the program commands into the queue. Similarly, when the Debugger

Subsystem performs the command, it places the reply into an outbox queue where the socket thread

will read a command, serialize it, and send it over the socket. Surprisingly little code needed to be

changed in the Debugger Subsystem to make this pretty significant change. This allowed me to

write a Debugger client in Pharo Smalltalk that has a copy of the program model. I am also able to

integrate the Debugger client with the Modtalk IDE so that setting breakpoints on a method is as

simple as it is in Eclipse, Xcode, or Visual Studio.

9 of 11

Figure 2: Remote Debugger

What I Learned

This senior project has been a fantastic learning experience for me. One of the most

important lessons that I learned was how painful it is writing a debugger when I don't have a

debugger to debug it. Some of the biggest challenges that I have had to overcome have to do with

dealing with multi-threaded and multi-process programs. Figuring out how to handle appropriate

synchronization and avoiding deadlocks was very neat. I also learned a lot about the value of a well

specified state machine. I had to make several changes to my state machine during the course of the

remote debugger development, but each change was easy to make and almost always done properly

on the first try because I always updated my state machine documentation prior to making the

change which validated the design. Figure 3 shows the current state of the remote debugger state

machine.

Figure 3: Remote Debugger Protocol State Machine

Technologies and Libraries Used

I used git for a number of different parts of the project, including the vm work, the Pharo

Smalltalk work, as well as the Debugger Subsystem work. I used the pthread library to get cross-

platform thread support for the socket thread for the remote debugger. I used the readline library to

States Connection Pending Options Negotiation Connected Disconnected
Commands
Connection Request 0 handleConnectionRequest handleError handleError handleError
Options Negotiation Initiation 1 handleError handleError handleError handleError
Options Negotiation Confirmation 2 handleError handleOptionsNegotiationConfirmation handleError handleError
Options Negotiation Cancellation 3 handleError handleOptionsNegotiationCancellation handleError handleError
Options Negotiation Ack 4 handleError handleError handleError handleError
run 5 handleError handleError handleRun handleError
break set 6 handleError handleError handleBreakSet handleError
continue 7 handleError handleError handleContinue handleError
into 8 handleError handleError handleInto handleError
over 9 handleError handleError handleOver handleError
dump 10 handleError handleError handleDump handleError
arg stack 11 handleError handleError handleArgStack handleError
arg env 12 handleError handleError handleArgEnv handleError
temp stack 13 handleError handleError handleTempStack handleError
temp env 14 handleError handleError handleTempEnv handleError
Break Set Success 15 handleError handleError handleBreakSetSuccess handleError
Break Set Failure 16 handleError handleError handleBreakSetFailure handleError
Dump Stack Reply 17 handleError handleError handleDumpReply handleError
Object Reply 18 handleError handleError handleObjectReply handleError
Error Reply 19 handleError handleError handleMTError handleError
Quit 20 handleError handleError handleQuit handleError

Total States: 21

10 of 11

get user input from the command line because gets gave me compiler warnings (seriously, I used

gets for a while because I thought it was going to be temporary, but then switched to readline when

I realized that a command line debugger is not a bad thing to have around). I used Pharo Smalltalk

for development of the target builder (for bytecode runtime support) as well as the Debugger Client

that integrates with the Modtalk IDE. I used gdb for my C debugging needs.

11 of 11

Grading

Bytecode interpreter.. 14/14

Evaluation control protocol design... 10/10

Evaluation control implementation
between processes w/shared queues... 28/33

Debugger control interface design.. 10/10

Decompiler.. 00/10

Debugger control command line interface.. 17/23

Extra Credit

Remote object framework... +05

Evaluation control protocol implementation #2.. +05

Evaluation control protocol implementation #3.. +03

Debugger control interface implementation #2... +10

Total...79/100
+23
102/100

Grade: A

