
Josh Fridstrom's Senior Project Proposal
10-22-15

Modtalk Debugger

Summary: For my senior project, I plan to design and implement a debugger for the Modtalk project.
By the end of the semester I will be able to compile a Modtalk program for debug, run the program in
debug mode, connect a debugger to the program and then set breakpoints, step through the code,
inspect objects, show stack traces, switch processes, and change the value of variables while the
program is running.

The project will consist of the following parts each worth the specified points.

1. Bytecode interpreter 14
I will need a bytecode interpreter for compact code sequences and
so that I can easily slip in breakpoints. The bytecode interpreter will
be partly written in C as part of the core runtime, but there will be
a part written in Smalltalk that will generate C code to run on the runtime.
Points will be awarded based on the kinds of programs can that be compiled
and run with the bytecode interpreter.
* Points for getting Nano to run (the smallest possible program) 2
* Points for getting Simple to run (a very simple program with modules) 5
* Points for getting ANSITester to run (tests all major components of the language) 5
* Points for getting DeltaBlue to run (we want to get a benchmark score) 2

2. Evaluation control protocol design 10
I will document the initial design of the evaluation control protocol and
keep the documentation updated as I make discoveries and changes
during implementation. Evaluation control protocol will specify how
the debugger connects to the running program and what the
communication between them looks like. Part of the design will be
determining what happens when a breakpoint is hit. On the first
implementation, when a breakpoint is hit, all other processes will halt
and the control of the program will be given to the debugger process.
* Points for initial draft 5
* Points for having an updated document at the end 5

3. Evaluation control implementation between processes w/shared queues 33
In the first implementation, the debugger will be a different processes
in the same program that is under development. The debugger will
communicate with the the other processes via a shared queue.
This implementation will validate the protocol design.
* Points for creating a pluggable debugger subsystem 1
* Points for evaluation control commands (step, resume) 10
* Points for getting a stack trace 2

* Points for accessing temps are arguments in a method 5
* Points for accessing permanent objects 5
* Points for accessing runtime allocated objects. 5
* Points for changing the value of a variable 5

4. Debugger control interface design 10
I will keep a document of the initial design of the debugger control
interface and keep the document updated as I make changes during
implementation. Debugger control interface will specify what
commands a user can give to the debugger in order to control
a the evaluation of a debugged program.
* Points for the initial draft 5
* Points for having an updated document at the end 5

5. Decompiler 10
I will need a decompiler for my command line debugger to show a user the
source code for a method they are currently breaking in.
* Points for producing source code for a method without blocks 5
* Points for handling blocks and showing method code 3
* Points for showing where you are in the method 2

6. Debugger control command line interface 23
The first implementation of the debugger control interface will
be via the command line. A user can run a program compiled for
debug and issue commands similar to gdb in order to debug their
program.
* Use io controls to make async fd 5
* Set sigio handler to signal interrupt into the program 5
* Program interrupt handler will signal appropriate semaphores 3
* Points for setting/removing breakpoints on the entry to a method 3
* Points for stepping through a method and resuming 3
* Points for dumping the stack 3
* Points for showing the decompiled method currently breaking in 3
* Points for setting/removing breakpoints on a message send 3

Total Points 100

Extra credit opportunities
7. Remote object framework 10

I need a remote object framework implementation in Modtalk so that
my debugger and program under debug can communicate via
message sends. Eventually, I would like the debugger to communicate
with the program over a socket.

8. Evaluation control protocol implementation #2 10
Better debugging for multi-process programs. Processes

not currently being debugged will continue to run when
the debugged process hits a breakpoint.

9. Evaluation control protocol implementation #3 5
Switch to using sockets instead of shared queues.

10. Debugger control interface implementation #2 10
The implementation of the debugger control interface will integrate
with the existing Modtalk IDE. A user will be able to set breakpoints,
view stack traces, inspect objects, and control the program evaluation
all from the IDE.
* Points for turning position in string to position in code stream
* Points for coloring where a breakpoint is set in the IDE
* Points for adding menu to toggle breakpoints on message sends
* Points for the stack and inspector guis
* Points for being able to step through code when a breakpoint is hit

A: 90-100
B: 80-89
C: 70-79
D: 60-69
E: <60

