

Job Coach
An iOS application		
Created by Jessica Huron
CS 480 Senior Project
Northern Michigan University

Motivation
	When deciding what to create for my senior project, I knew I wanted it to be related to my previous experience teaching special education. Throughout my entire experience returning to school for a degree in Computer Science, I have maintained focus on my initial interest in the field which is to ultimately be a part of impacting education through the use of technology. I wanted to create a tool that I could actually see being used by students and staff, a tool that is easy to use, easy to teach others to use and effective at fulfilling its purpose: increasing independence for individuals with disabilities. While my application does not sound related to education necessarily, an important part of older students’ special education program involves vocational training. If resources allow, a job coach would be provided by the school or through Michigan Rehabilitation Services to assist with an individual’s transition to the workplace. However, funds often do not allow for direct one-to-one job coaching to remain in place long and job coaches often have a large caseload of employees to oversee. With the use of my Job Coach application, individuals with disabilities could have direct, personalized support on the job available at all times, thus increasing independence and productivity in the workplace.
Summary of Application
	Job Coach is meant to be simple to use and simple to read, this tool is for users who may not have high level reading skills so visuals have been included where possible and the overall language has been kept basic. Job Coach is designed to be initially set up by a job coach or employer, either on their own, or even better, together with the employee. Job Coach has a job coach/employer side to create a new employee, create the employee’s daily work schedule, and create a task list for the work that is expected of the employee. The job coach/employer input is saved as Core Data so it can be displayed on the employee’s side of the app.
The employee’s side has options for the employee to view their daily work schedule, view a list of tasks they are expected to complete while at work as well as a way for the employee to show that the task is completed. The employee can also select an individual task for further clarification, showing the task broken up into simpler sub-tasks, and, if set up by the job coach, an image paired with the task to quickly enhance understanding of the task at hand.
Technologies Used
	Job Coach was built for iOS and written in Swift. Initially, I had planned to write my app in Objective-C, but after some experience coding in Objective-C and coming up short when looking for adequate, up to date resources for iOS apps in Objective C, it was clear that most iOS developers are currently working in Swift. I found Swift an easier language to learn and understand, plus it is certainly more concise.
	As you might expect, I used Xcode to write my code, create my app prototype and run the application. Within Xcode, the Storyboard became my favorite part of working on the project. It was exciting to be able to see, in general, what your program would look like rather than waiting until compile time. I used table views extensively and as well as navigation controllers in order to make my app simple for the user to quickly jump to the desired scene. Because I would like Job Coach to be able to be used on both iPhones and iPads, I had to learn how to use auto-formatting for every object on each scene.
Process
	While developing my senior project, I aimed to align my work to the agile practices of software engineering. It wasn’t perfect and I’m a one-man development team so naturally some practices were more relevant than others but I used the agile methodology to keep me on track.
	In the early planning stages, I found myself spending a considerable amount of time determining the layout and flow of the app. To me, this allowed for a creative output and I very much enjoyed being involved in user interface design. However, I could spend every day re-working the layout and rearranging the app views and even though I did come up with important considerations while prototyping, it was clear I was stuck in a form of analysis paralysis and not actually moving forward on project progress.
	I decided I had better make myself a schedule of sprints/iterations to stick to so that I wouldn’t spend all my time on analysis and design. My sprint schedule was as followed:
1. Complete wireframe with auto-formatting in place and navigation controller on each scene (auto-formatting allows the app to appear the same on any iOS device, even if rotated)
2. Database/storage system(s) in place and set up for use
3. Employer scenes working
4. Employee scenes working
5. Stylize and enhance appearance/usability (add visuals, etc.)
6. Add in features that were trimmed initially to get app working:
a. Timer
b. Password prompt for employer views
c. “What should I be doing now?” button
7. Extra features:
a. Any spot where the word “Employee” could be replaced with actual name pulled in from database
b. Congratulatory alerts upon task completion
c. Feature for if all tasks are completed and time is left in the work day, have a prompt “Ask for more work”
While the sprint schedule was very helpful, I needed to break down my work into more specific tasks (as you can see, sprints 3 and 4 are particularly vague). It was hard to know what tasks to create but then I remembered, “just do the minimum work needed in order to get something working.” So, I created a small Kanban board next to my desk to keep track of my work. I preferred the physical tasks (sticky notes) over using an online Kanban board because during my work, when I came across another task that would need to be done, I didn’t have to log on to some system and derail my work. I just had to grab a sticky note from my desk, jot down my task (or important considerations, issues, etc.) and slap it on my board. Plus, being able to move a task out of backlog and into development felt like actual progress (and it felt even better to move the task into complete!). I began to feel like my work was easier to complete once I created tasks focused on functionality, such as: “Employer can create a task list.” It kept my focus direct on getting just one specific feature working and calmed my overwhelmed feelings that arose when I looked at how much work I still had ahead of me.

[image:]

*Note: You’ll notice I also included tasks for some of my other classes; I used my Kanban board to help with time and task management for more than just my project as I had a lot to keep track of this semester.
There was a considerable amount of research that I put into this project. This was my first go at making a real iOS app; this semester I am also enrolled in iOS Development but our apps for class are kept simpler and smaller than my project is. I found a great deal of help in online video tutorials to help with everything from learning the basic syntax of Swift to storing information using Core Data. On my Kanban board, you can see one of the online resources that I referenced frequently, Udacity, which has online courses in a great deal of programming topics.
After my initial task was done, I had created my project wireframe and next on my sprint list was to tackle how to store the data that the employer/job coach would enter (employee information, schedule and tasks). This required a lot more research as I had options for how to store input. I initially learned the basics of SQL and sqlite3 and picked up the concepts quickly; I felt the queries were relatively straightforward and I found an easy to use database management system, SQLite Manager, that allowed me to quickly create the tables for my database. However, things were not so easy when I tried to integrate my database into my Swift project; sqlite3 is C-based and it became a frustrating experience to get my databases working with Swift. It was time to give in and finally look into that Core Data thing I had been reading about online but ignoring entirely. As it turns out, once I got over the trickier syntax for using Core Data, the integration into the project was beautiful. Where SQL and sqlite3 use tables and records, Core Data uses entities and attributes. Once I got a grasp of how Core Data viewed the data as storing an object’s contents, the syntax made much more sense. An example of some basics of Core Data used in my program is below.
 //managed object context
 let moc = (UIApplication.sharedApplication().delegate as! AppDelegate).managedObjectContext

 //fetched results controller
 var frc : NSFetchedResultsController = NSFetchedResultsController()

 func fetchRequest() -> NSFetchRequest {
 let fetchRequest = NSFetchRequest(entityName: "Task")
 let sortDescriptor = NSSortDescriptor(key: "taskSummary", ascending: true)
 fetchRequest.sortDescriptors = [sortDescriptor]
 return fetchRequest
 }

 func getFRC() -> NSFetchedResultsController {
 frc = NSFetchedResultsController(fetchRequest: fetchRequest(), managedObjectContext: moc, sectionNameKeyPath: nil, cacheName: nil)
 return frc
 }

What I Learned
	When I started my project, I honestly had not even considered data storage, I knew I wanted user input but didn’t really think about what that meant. When I wrote my project proposal, there was no mention of data storage because I truly didn’t realize that was going to be such a big part of my project. I had no experience with databases and didn’t have the first clue as to what it would entail to use one in my project. I had no idea what data persistence was or what SQL was. To say I learned a lot while completing my project is a vast understatement.
	I now know about the basic functions of a database: create, read, update, and delete data, or CRUD as it often referred to. I know how to use Core Data and create functionality in an app using Swift.
	I also learned how to navigate a brand new (to me) and very involved IDE, Xcode. One of my major initial hurdles was just learning how to get around in Xcode and use all the tools that I needed. Through Xcode’s Storyboard I learned about UI/UX design and enjoyed trying out the various built-in layouts and objects provided.
Retrospective
	Being solely responsible for seeing a real project through from beginning to end was a rewarding experience for me. I was first drawn to computer science because I couldn’t wait to design and create my own programs, not realizing what really went into that process at the time. It was hard work, I was frustrated and stumped at times but when I saw pieces of my app working, it was exciting and made me want to keep learning.
	If I were to do this project over, I would spend less time planning and get some parts of my app working earlier. Layout is easier to change around in Xcode than I realized so I didn’t need to sort it all out in the beginning as much as I thought I needed to.
	I would love to carry the project further and add more features to Job Coach; I’ve considered making various “levels” of the app based on employee abilities. An individual with adequate reading ability and tendency to stay on task without prompting could use the app with a level that has few visuals and no prompts to stay on task. An individual with functional reading skills who needs reminders to stay on task could use a level of the app that includes few words paired with simple graphics and has built in prompts to remind the user to stay on task.
[bookmark: _GoBack]	I am overall very pleased with what I accomplished, not only in the presentable work but in the content I learned along the way. I certainly underestimated the complexity of some of the features I had dreamed up for this app, but I did make a considerable amount of progress on my features list below. New in this version is the addition of “Persistent Data Storage” as my original grading scale rubric from my project proposal left this incredibly important feature out. Learning about data storage and implementing it in my project has been a large hurdle to clear, but I’ve cleared it. It was disappointing along the way to realize I was likely not going to be able to pull off all the snazzy features I was hoping to, but I believe that my work reflects a B grade, according to my rubric below.
	Feature
	Extra Info
	Points Assigned

	Persistent Data Storage
	Using Core Data to store employee information, tasks, etc.
	20 pts

	Ability to edit employee schedule
	Access in job coach/employer view
	15 pts

	Ability to edit employee task list
	Access in job coach/employer view
	15 pts

	Interactive daily schedule
	Access in employee view
	10 pts

	Task list which expands to break down individual task into smaller steps, paired with visuals
	Access in employee view
Ideally, visuals would be pictures of employee completing these tasks in the workplace
	15 pts

	Task completion/”Done” selector, which greys out the completed tasks and may require a supervisor or coworker’s authentication before the task shows up as completed
	Access in employee view
	10 pts

	Bonus Features:
- Break timers

- “What should I be doing now?” button on the bottom of every screen (other than login)
- Login to the employee view or the job coach/employer view
	
Based on the scheduled breaks found in the employee’s daily schedule, there should be an alert/reminder at the scheduled break time and a visual timer should begin for the allotted break time.
Access in employee view

Only the job coach/employer view will require a password. This keeps use of the app simple for the main user (the employee) and prevents the employee from editing their daily schedule, removing non-preferred tasks from task list, etc.
	15 pts

Given a sum of the assigned points for accomplished features listed above, I will use the following grading scale:
A (>= 90)	B (>=80)		C (>=70)		D (>= 60)	F (<60)

image1.jpeg

