Joe Weickert
Senior Project Reflection
· What did I learn?
Throughout this project I have gained a deeper appreciation of the theory of finite groups and object orientated design.
Before going into this I wasn’t very comfortable with Smalltalk, and now I’m slightly comfortable with Smalltalk (which is a feat in and of itself).
I also learned the power of clean code. I would often write methods that were tens of lines long only to go back later to refactor and whittle it down to the six or seven lines that did what I actually wanted. E.g. I wrote subtraction and division methods for many types of group structures before I realized that it’s as simple as negated addition and multiplication by an inverse, respectively.

· What would I do differently?
Start trimming the fat and getting big picture stuff done earlier and more frequently. I fell into the trap of working on more and more back end ‘behind the scenes’ code and not drawing actual things to the screen until towards the end of the project. Made it overwhelming and stressful when I got to that part due to the amount of code I had written.

· What technologies I you use, and why them?
I used the Matrix and Complex number classes that Smalltalk Squeak 5.1 has pre written. Matrices are used to help store and compute algebraic numbers, and complex numbers are used in many facets of the finite group classes.

· How is my software organized, and now that I’m done was that the right choice?
[image:]For the finite groups (the bulk of the project), I organized the project so that the Subgroup class is the hub from which individual group behavior comes from. E.g. to test if a group is normal as a subgroup of another, the subgroup class depends on the group it contains to implement the * operator, and to understand what a reciprocal is in its given context:

· Where there any complex data structures or algorithms?
I am most proud of being able to raise modular integers to high powers using the following algorithm:
[image:]
It reduces the problem by splitting the power into halves, then recursively figuring out the power of each half and multiplying the results together.

· Was the project about as hard as I predicted?	
Harder in some ways, easier in others.
It was much harder to lay out the basic structure of the project than I had anticipated. Although the idea of groups and the like is very brief, the application of them into a rigorous code based environment requires very careful forethought and planning.
However, once that fell into place, a lot of structure sort of fell out. Once I got the basics down, everything fell into place.

· Conclusion
[bookmark: _GoBack]This was a really tough project made harder by my intense last semester, and the subject matter & programming language combination I chose. While the arc of the project didn’t follow what I intended at the start, I am proud of what I accomplished and learned many lessons on the way here.
image1.png
5 Projects Tools Apps Do Extras Windows Help Search or evaluate...

isNormalin: aSubgroup
‘Answer true if the receiver is normal as subgroup of aSubgroup.
self do: [:each |
asubgroup do: [:other |
(self includes: other * each * other reciprocal)
ifFalse: [~ false]]).
~ true

JHW 12/4/2016 21:21 - testing - 1 implementor - only in change set Unnamed -

image2.png
raisedTolnteger: aninteger
"Answer the receiver raised to the power aninteger where

the argument must be a kind of Integer.”

aninteger isinteger
ifFalse: [~self error: 'raisedTolnteger: only works for integral arguments'].
aninteger = 0 ifTrue: [~ self identity].
aninteger = 1 ifTrue: [~ self].
aninteger > 1
ifTrue: [~ (self * self raisedTolnteger: aninteger // 2)
* (self raisedTolnteger: aninteger \\ 2)].
~ (self raisedTolnteger: aninteger negated) reciprocal

JHW 12/4/2016 14:52 - mathematical functions - 11 implementors - only in change set Unnamed -

