
Modtalk Optimizations: a Senior Project
Kurt Kilpela

December 2014

Modtalk and its abstract machine

Modtalk is a modular implementation of Smalltalk. (I’m sure you’ve heard this too many
times.) In lieu of the liveness of traditional Smalltalks, we choose to compile Modtalk, separating
the development and runtime environments. We can compile a program and give a native
executable!

Compilation is to our intermediate form which targets our abstract machine. The abstract
machine was inspired by work by Pat Caudill and Allen Wirfs-Brock.

We define a register set, stack, and instruction set.

Our instruction set operates on our registers and stack. We offer a variety of options for
our intermediate form. Each is useful in one way or another.

Currently our main form of intermediate representation (IR) is called byte code IR
(BCIR). We assign an 8-bit value to a type of instruction. This form has a few benefits. Firstly,
it’s compact. Secondly, it’s easily converted to other forms. Lastly, it could be used in a JIT for
fast runtime compilation.

Our second form of IR is human readable form which is useful for debugging and testing
against.

A more recent form of IR is representation as a control flow graph (CFGIR). This form
will be used for control flow optimizations in the future.

Register Use

R Holds the receiver and return value

A Holds the first argument

X Used to index off a pointer

SP Points to the top slot of our stack

FP Points to the base of a frame

PC Program counter

CC Flags register (specific to that process)

Optimizations foundation

The goal of optimizations is to make a program faster, or reduce it’s size. That said, an
optimization may result in slower runtime or an increase in program size. Detecting when to
apply an optimization is a difficult problem. Some optimizations result in a large net positive for
the program, trading slight increases in program size for massive gains in performance. Other
optimizations might bloat a program while resulting in “little” increase in program speed.

Optimizations can be applied at various times. Compilers can apply optimizations at
compile time like I currently do. Runtime statistics can be captured to improve the effectiveness
of these optimizations.

Dynamic languages tend to apply optimizations at runtime compiling to a byte code form
and optimizing hot spots in programs. Areas of high use receive the highest level of
optimization. This can result in near c speeds for programs.

Individual optimizations tend to be easier to apply at a specific level of abstraction.
During compilation and optimization, the program is transitioned through various levels of
abstraction. Representations closer to source code allow for object optimizations. As you
approach machine code, optimizations like peephole optimizations and dead code elimination
become easier and more effective.

My original plans

In the beginning, I chose a set of optimizations I thought would provide a good set for the
project.

Peephole Optimization:
Removed sections of code which repeat or do not contribute to the output of the

program.
Leaf Method Optimization:

Prevent frame building for an activation which does not send a message. (setters/
getters)
Message Send Caching:

There are 3 types of call sites: monomorphic, polymorphic, and megamorphic. Most call
sites are monomorphic, meaning they see one type of receiver. Polymorphic sites see a few

receiver types while megamorphic sites see many receiver types. Caching of monomorphic and
polymorphic sites can result in very fast message sends.
CFG Generation:

On it’s own, a control flow graph is not an optimization. Optimizations can be written that
act upon the CFG.
SSA Form/Phi Assignment:

SSA is an intermediate form where each assignment is to a new register. This allows
optimizations not available in other forms. Compilers such as clang and gcc use SSA to
generate very fast code.

Optimizations I applied

I started out with a pretty broad and naive idea of what I planned to do. I had already
applied some optimizations which I did not include in my original proposal but will be described
here.
Peephole Optimization:

Peephole optimization was one of the easier optimizations to apply. For these
optimizations, I wrote a visitor which walks IR. When the last node in an optimization is
encountered, the optimization is checked and applied. Visitation continues at the start of the
optimized section to allow all possible peephole optimizations to be applied.

Other peephole optimizations exist in Modtalk. Many more could be created.
Leaf Method Optimization:

Optimization of leaf methods was relatively straight forward. During compilation, if a
method is detected to be a leaf method, the compiler emits a different code sequence. This
optimization allows accessors to skip frame building limiting runtime cost of accessors.

Sample Sequence Optimized Sequences

push R
pop R (Sequence removed)

mov [2, FP], R
mov R, A mov [2, FP], A

I need to explain how message sends work in Modtalk before we continue. Methods are
hashed into a method dictionary. The slot immediately following an object’s header stores it’s
method dictionary. (This is why we use the method dictionary for caching as described in a
moment.) A method dictionary is chained to the method dictionary for it’s superclass. When an
object is sent a message, lookup will traverse the linked list of method dictionary checking each
for a method with that selector.

Message Send Caching:
As I’ve said before, most call sites are monomorphic. Implementing a monomorphic

inline cache can provide a significant win. For polymorphic and monomorphic call sites, I chose
to optimize them without caching. Our monomorphic sites now store the MethodDictionary of an
object and the method which should be activated if the same type of receiver is being sent that
message. If the method dictionary does not match, a lookup occurs and the cache is updated
for the new receiver.

The sequences above are for our threaded runtime and the cache is stored in code stream. In
our x64 native runtime, the cache is not in the code stream.
Inverted Lookup:

Sample getter Optimized getter

push FP
move SP, FP
pushMethod
push nil
push R
move [3, FP], X
move [2, X], R
move [1, FP], X
move FP, SP
pop FP
ret

move [2, R], R
ret

Normal Send Cached Send

mt_lookup,
(OP)&Symbol_standardBenchmark,
callX,

mt_lookupAndCache,
(OP)NULL, //method dictionary slot
(OP)NULL, //method slot
(OP)&Symbol_standardBenchmark,
callX,

A site may only activate one method but have many receivers. Imagine a class
implements the method #new. All of it’s subclasses also respond to #new but in our cache
implementation, the method dictionary is used as the key. Unfortunately, linear search would be
too slow when there are more than (approximately) 3 different types. We can however make
lookup faster. While maintaining the original lookup method (for use by perform:), we are able to
redirect lookup at a call site to look in a different location.

For each selector sent in a Modtalk program, I generate an inverse lookup dictionary.
Instead of using the selector as a key, I use the method dictionary of the object. We look in a
selectors dictionary to obtain a nearly constant time lookup. For a message like #new, this can
be a tremendous win. In the case where the method is in the receivers local method dictionary,
the lookup time should be about the same.
Open Coding:

I owe you an explanation of open coding. In Smalltalk, everything is a message send.
When I say everything, I mean everything! The language does not define control structures as
part of it’s implementation. Control structures such as conditionals and loops are implemented
via message sends and blocks (closures). Blocks aren’t required for control structures but make
them a lot nicer to implement and use. This causes performance to suffer. For loops, the stack
would grow an activation for each run through the loop and lookup time for the conditional
messages is noticeable.

When Smalltalk was originally released, books were released to explain aspects of the
system and provide advice for implementors. There is a list of selectors which can be “open
coded” for performance reasons. With this, you lose polymorphism around these specific
selectors. So, this #whileTrue: would be open coded as shown below. I’ll discuss the
performance implications later.
[aNumber < 5]

whileTrue:
[aNumber := aNumber + 1]

start:
aNumber < 5
booleanCheck
branchFalse end
aNumber := aNumber + 1
branch start

end:
Control Flow Graph:

As discussed before, generating the control flow graph (CFG) is not an optimization on
it’s own. Optimizations can be applied to a method in this form. Compiler intention (like storing
into a variable) is maintained at this level. This is one of the trickier portions of this project. The
relationship between the compiler and it’s encoder needed to change. Each encoder (the thing
that converts intention into intermediate code) is now responsible for interpreting more
intentional messages from the compiler.

I’d like to note, the level of abstraction between the compiler and encoder does not seem
to have reached a fixed point.

The Effect of Optimizations:

At this point, it’s important to talk about benchmarks. For the test below, I’m running
DeltaBlue, a constraints solver. 29,330,470 message sends take place in the course of a
DeltaBlue run.

In general, benchmarks tend to rely heavily on integer arithmetic. In a niche
mathematical language, this is alright. When looking at a general purpose programming
language, this is a terrible metric. DeltaBlue is targeted as a garbage collection test. It allocates
many object during the course of its run. It’s a better analog than many benchmarks for object
oriented languages.

I’m going to consider each optimization individually. Modtalk currently has three
runtimes: bytecode interpreted in Smalltalk, threaded interpreter, and native. Support for
bytecode interpreted has lagged behind the other two.

Our native runtime compiles the code for our methods to assembly. Instructions in our
human readable IR are in many cases 1-to-1 with native instructions. Maintaining the abstract
machine previously described forces some instructions (mostly stack instructions) to take a few
assembly instructions. This runtime targets x86_64 native intel processors on OS X and linux.

Our threaded interpreter compiles our IR to an array of function pointers. Arguments to
these instructions are placed in the code stream as well. Our threaded runtime is a close analog
to our abstract machine. This runtime is meant for quick and easy porting to new platforms.

The effect of a specific optimization is different for each runtime. An unoptimized run is
reported first for each target.

The effect of producing native code is apparent.
Peephole Optimization:

Peephole optimization gives results that are counter-intuitive at first glance. You’ll notice
we lost over 900ms. This leads me to believe pipelining might be coming into play here. In a
CPU, there are instructions which are in the process of being decoded and executed. As each
instruction is decoded and executed, more operations may be in the process of being
interpreted. With a peephole optimizer, it is possible we are reaching branches sooner resulting
in more places where the CPU’s branch prediction is wrong.

0

1750

3500

5250

7000

Native
1700ms

Threaded
6502ms

0

1750

3500

5250

7000

Native
2620ms

Threaded
6300ms

Leaf Method Optimization:
Like peephole optimization, leaf method optimization doesn’t offer much performance for

native. Threaded results are similar to that of peephole optimization.

Message Send Caching:
Monomorphic inline caching offers the largest performance boost for a single

optimization.
I’ve provided the unoptimized average in addition to the cached average so you

can visually see the effect. Native run time was cut 1045 ms, or 62%. That is a huge win.

0

1750

3500

5250

7000

Threaded
6310ms

Native
1697ms

0

1750

3500

5250

7000

1697ms
652ms

5258ms

6502ms

However, we still spend the majority of our program in method lookup. The time spent in lookup
for threaded dropped about 35% but run time did not reflect this.
Inverted Lookup:

Inverted lookup offered similar performance improvements to caching. This suggests a
significant portion of the messages sent were implemented in a class close to the type of the
object.

We still drop 33% of the total run time for native. I expected a larger win for inverted
lookup.
Caching + Inverted Lookup + Leaf Methods + Peephole Optimization:

0

1500

3000

4500

6000

1142ms

5889ms

0

1250

2500

3750

5000

616ms

4691ms

In both runtimes, enabling all optimizations resulted in the fastest running program (of
my test set.) I’ve included all of the data I’ve collected in the appendix. For native, we saved
64% of the programs total run time! For threaded, we were able to save 28%.

Open Coding:
I need to preface this section. A few selectors are open coded in Modtalk. The selectors

used to implement if, if/else, logical and and or, identity (==), and looping selectors. For this test,
I disabled all open coding except open coding of the looping selectors. Looping without open
coding results in a frame activation for each run through the loop. I did not want to worry about
this specific issue.

For my open coding test results, I am only considering the previous case where all
optimizations are turned on. In ANSITester, our Modtalk kernel tester, the runtime jumps from
about a second to almost 13 without open coding. This is why I chose to look at our most
optimized programs only.

In our otherwise most optimized situation, we are slower than the unoptimized state for
each runtime. The effect is most apparent in native where the run time more than triples. We
hope to remove the need for open coding of these selectors via more advanced optimizations.
This would allow for polymorphic use of the restricted selectors and for the optimizations to
apply to the code of the developer.

0

2500

5000

7500

10000

9113ms

1972ms

How we compare:

The big question that comes to mind at this point is how we relate to other languages.
Two similar object-oriented languages (with implementations of DeltaBlue) are Java and Python.

A DeltaBlue run in Python averages 2370ms. Our threaded runtime is significantly
slower across the board. However, our native runtime outperforms python in all cases (except
when peephole optimization is the single optimization). Now, you might be thinking, python is
slow…

In Java, DeltaBlue runs in 232ms on average. I’d like to note, in the first run, it takes
around 460ms. Across runs, Java must store optimization information. In our most optimized
runs, we are 2.65x slower than java. Considering Java’s implementors have been working for
two decades on optimizing Java, it’s impressive for a semester of work.

My Thoughts:

As a more research and results oriented senior project, I chose to omit details of
implementation in this paper. During my presentation, if desired (Randy), I can show code
samples and explain in more detail how things are implemented.

Not knowing exactly what I was getting into in the beginning, I naively chose
optimizations and forms for optimization I heard about. I wasn’t able to finish all of the
optimizations I set out to do but I’ve been able to develop ideas for continued work.

Now for my thoughts on grading. As it’s more research based, as time went along, I’ve
discovered new ideas I chose to explore in-place of those in my original presentation. My
original grade scale follows.

Optimization Points

Peephole optimizer 10

Leaf method optimization 10

Message Send Caching 30

CFG 30

SSA Form and Phi assignment 30

Control Flow Optimizations 30

Dead code elimination 10

To be more along the lines of what I would suggest if I were to resubmit my original
proposal, I’ve created the following.

I’m claiming 130 on the new grade scale. In my new grading range, it follows I should receive an
A. In my old scale, I should have received a C.

Lets average them together and call it a B. 

Optimization Points Claiming

Peephole optimizer 10 10

Leaf method optimization 10 10

Message Send Caching 30 30

Inverted Lookup 30 30

CFG 30 30

Open Coding 20 20

Appendix:

Name 1 2 3 4 5 6 7 8 9 10

java 460 208 207 205 206 204 208 204 206 208 232

nativeInvertedCachedPeepholeLeaf 616 616 617 614 619 616 609 620 619 617 616

nativeInvertedCached 619 620 621 612 617 621 620 609 618 617 617

nativeCachedPeepholeLeaf 620 618 667 617 621 611 663 670 617 614 632

nativeCached 664 615 663 669 667 665 614 669 668 622 652

nativeInvertedPeepholeLeaf 1130 1136 1132 1131 1125 1128 1139 1135 1127 1132 1132

nativeInverted 1177 1134 1175 1135 1135 1136 1136 1137 1130 1121 1142

nativePeepholeLeaf 1698 1696 1698 1697 1700 1694 1690 1690 1697 1689 1695

nativeLeaf 1693 1705 1708 1693 1695 1692 1689 1702 1697 1697 1697

native 1702 1696 1697 1701 1696 1699 1705 1705 1699 1704 1700

nativeInvertedCachedPeepholeLeafNoOpenCoding1954 2010 1956 1957 1961 2015 2004 1954 1954 1951 1972

python 2423 2373 2369 2370 2366 2360 2361 2353 2359 2361 2370

nativePeephole 2676 2628 2620 2635 2626 2611 2624 2621 2661 2620 2632

threadedInvertedCachedPeepholeLeaf 4712 4362 4846 4796 4372 4769 4788 4700 4787 4779 4691

threadedCachedPeepholeLeaf 4834 4782 4637 4825 4415 4721 4883 4845 4887 4873 4770

threadedInvertedCached 5143 5287 5124 5249 5186 5136 5237 5285 5186 5144 5198

threadedCached 5196 5389 5394 5075 5089 5503 5199 5086 5357 5289 5258

threadedInvertedPeepholeLeaf 5497 5571 5190 5500 5501 5549 5487 5193 5189 5508 5419

threadedInverted 5976 5965 5951 6009 5917 5594 6015 5907 5905 5648 5889

threadedPeepholeLeaf 6070 5913 6073 5922 6125 6065 6103 6122 6128 5757 6028

threadedPeephole 6271 6478 6281 6422 6282 6233 6443 6335 5967 6283 6300

threadedLeaf 5970 6324 6321 6383 6330 6408 6378 6368 6410 6209 6310

threaded 6167 6638 6378 6519 6525 6575 6533 6635 6539 6509 6502

threadedInvertedCachedPeepholeLeafNoOpenCoding9114 9214 9158 8613 9218 9189 9157 9253 9075 9141 9113

(The order in the graph corresponds to the order in the chart)

0

2,500

5,000

7,500

10,000

