
CS 480, Senior Project Proposal
Kurt Kilpela

Fall 2014

Objective 
To research and implement various optimizations for Modtalk code generation.

Project Details 
As with any compiler that schedules tiles of code, operations can become repetitive. Overlap 
may exist between these tiles of code resulting in multiple operations with no net benefit. The 
first optimization I’ll explore will relate to removing this overlap via a Peephole optimizer. 
Secondly, I will begin to explore control flow and SSA optimizations.

With polymorphism, message send call sites can be monomorphic (one receiver type), 
polymorphic (multiple receiver types) or megamorphic (too many receiver types). With the case 
of monomorphic call sites, we can bind the method to call and do a quick check at the beginning 
of the method to ensure the receiver is the correct type. With a polymorphic call site, we can 
include in the code a sequence of receiver type checks and branch instructions such that we 
can find the method faster than doing a lookup. The site could be re-written dynamically or 
statistics could be collected during a run to ensure the order of the type checks will provide the 
fastest lookup. Megamorphic call sites have too many receiver types, so finding megamorphic 
call sites and ensuring they do a standard lookup will result in faster code.

Method without a message send are called leaf methods. For each method, we build a frame. 
Building a frame is unnecessary, so with leaf methods, we can apply optimizations that remove 
about 80% of the instructions in our leaf methods. Another place we can remove code is when 
the code is dead. Dead code elimination is a size optimization.

If time remains, other optimizations will be explored.

Grading 



Total is 150

Grade Scale 

Optimization Points

Peephole optimizer 10

Leaf method optimization 10

Message Send Caching 30

CFG 30

SSA Form and Phi assignment 30

Control Flow Optimizations 30

Dead code elimination 10

Number of points Grade

130 A

110 B

90 C

70 D

<70 F


