
Lindsey Saari
Senior Project
Winter 2015

April 23, 2015
!
!

Final Essay
!
 Introduction

 When I first came to Northern Michigan University, I decided to major in Science

and Math Education. After a few years in the program, I started to get second thoughts

of a career in the Education field. I’ve always had a love for numbers and problem

solving, so I started to brainstorm other majors that still involved Math. After speaking

with friends and family, the idea of programming and Computer science was brought up

and seemed appealing to me. Although during my high school years, I had never taken

any sort of programming course (and none were offered), I felt that I could take on the

challenge. I visited with Professor Andy Poe during the summer and based off of my

math placement scores, he encouraged me to enroll in CS 120 to see if it would spark

my interests.

Upon taking CS 120, I realized that I really enjoyed the challenge of programming

and the problem solving skills that it required. After taking Computer Science courses

for a few years, I was offered a position as a laptop technician at Micro Repair where I

worked until I was offered a programming internship. The internship allowed me to work

remotely and I was paid to learn Ruby On Rails. I picked up very quickly on the Rails

approach to web design and learned how the Ruby on Rails framework has made

!1

programming so elegant. The real life experience that I gained such as client

interaction, working with co-workers, and the stages of project design are something

that will definitely prepare me for my post college career in the workforce.

I feel that I have come a long way in the computer science program. Through all

the struggles and learning hardships, I feel that each bit of struggle was a positive

learning experience. I also have started to recognize my likes and dislikes as well as

areas of interest as a programmer.

!
Project Overview

For my Senior Project, I decided to present something that I worked on during my

internship. From speaking with various professors and students, I feel that not many

people know enough about Ruby on Rails and people almost seem afraid when you

mention the words. I think this may be do to their lack of knowledge and understanding.

 With Ruby on Rails becoming one of the most popular web frameworks, I feel

that it’s important to be familiar with it. While learning Ruby on Rails, it was actually fun

to compare and contrast the Rails approach with other languages such as Smalltalk and

PHP. Although Rails is associated with a steep learning curve, I feel that it’s not

impossible to understand.

The project that I am sharing allows for construction companies to organize all the

aspects belonging to a construction project. With user logins, users (with restricted

roles) are able to log into the website and manage their projects. Once a user navigates

to a project, the general setup section includes aspects such as budget and equipment

!2

that belong to specific projects. The user is then able to edit each section accordingly.

The project information is held in a sql database.

With the user in mind, it’s important to see the project from the customers point of

view at all times during development. This may have been the hardest part for me at

times since I see things naturally from a developer point of view rather than how a user

would see it. Testing was often difficult as well because as a developer, ones sees the

“happy path” versus all the other ways that a user can interact with the application.

Another difficult part was understanding all of the terminology and abbreviations that are

associated with construction work.

!
Explain the Rails MVC

 To explain the Ruby on Rails MVC briefly, we will start with the model. The model

contains all business logic for the application and in this case is linked to a database.

The view renders the UI and presents the data to the user. The controller receives

events from the outside world (the view), interacts with the model and displays the view

to the user. Below is a diagram in which the flow of the MVC is shown in a numbered

sequence.

!3

What I learned

 One of the biggest things that I learned throughout the development process is

that it’s very easy to make something more difficult than it has to be. Ruby on Rails has

libraries that you can include called “gems” which can be imported to the project. If there

is something that you wish to do and you think that it has probably been done before,

then there is probably an exiting gem that can help you to accomplish your task. Some

of the bigger gems that were used for user logins were devise, cancan and rolify to help

with user abilities, roles and authentication. Simple form is another gem that is very

useful in relation to form submission.

Throughout the process i’ve become a better programmer. Often I would find

myself mindlessly typing and then later go back to see that there were many lines of

code that I didn’t need, or could easily be condensed. For example, instead of using an

if else statement, it’s often more efficient to use the ternary operator. Rails helpers such

as “exists?” and “blank?” made coding more efficient as well. I’ve learned how important

it is to be able to critique and refactor your own code for efficiency purposes.

Rails follows the rule “Convention over Configuration.” I learned this too to be very

handy when it came to development. With the mapping between models and database

tables, there is much to be said about the underlying naming conventions. This was

very helpful once it was fully understood. I was also very happy that I had some

previous knowledge of sql queries, which were used everyday.

jQuery was essential for traversing various elements in the DOM, and at first I was

a little rusty, having not used it for some time. I went through a few tutorials and quickly

relearned it. Now, jQuery is something that I fully understand and use everyday as well.

!4

One thing that I learned about myself is that in order to improve as a developer,

you need to set aside time to plan instead of rushing to write code immediately. I

realized that most of the time, mindlessly writing code is inefficient and you usually end

up wasting time. I’ve gotten a lot better at coming up with a plan first before I start

coding. I also know that if I ever need help, it doesn’t hurt to have a second pair of ears

listening to your train of thought. There could always be something that you didn’t

initially think of that someone else did.

This was also my first time working directly with clients. I learned how to take

constructive criticism and how important it is to understand what your client is really

asking for. Often clients have no technical background, so it’s easy to get frustrated with

their lack of understanding. It’s very important to have much respect on all levels and to

make the client feel that what they are saying is important. If the client has your trust

and you’re delivering a good product, then the process stages should have better

transitions.

Communication is also a key factor when it comes to client interaction. I remember

one day when I was sending a client a report of my daily accomplishments and I got a

very positive reply. They thanked me for being so thorough with my descriptions and my

detailed questions. I was also applauded by my co-workers.

!
What would I do differently

If I could go back and do things differently, I think that I would slow down. Often

when something wouldn’t work, I would easily get frustrated and not get to the real root

of the problem. I did though learn some great debugging approaches in the rails console

!5

and in the browser. If there was a jQuery issue, for example, I could often paste my

code into the browser console and check to see what was going wrong, or if there was

some sort of rails issue, I could open up the rails console and test there. I also feel that I

shouldn’t have been so afraid to ask for help at times. I often thought that asking for

help was showing that you were giving up, but in reality it’s not. Asking for help is all part

of the learning experience and it makes you a better programmer.

!
Organization

While using a sql database, the correspondence from the model to the database

was quite simple. With the rails naming conventions, the project was very organized. I

don’t think that a rails project could ever be unorganized; I would say that it’s almost

impossible because the framework doesn’t allow for sloppiness. For example, a

controller action often corresponds to a view. If there was a controller called

‘equipments’ and there was an action called index, the index action corresponds to the

equipments index view. The project is organized by models, views and controllers, so

the naming conventions make it organized and easy to navigate. The routes also

correspond directly to the specific actions. The most confusing part of the organization

was the model relationships. Often the client could portray what they wanted, but it’s the

developers job to decide what relationships actually exist. The overall goal was to make

the application easy for the user, and I feel like that goal was met.

!
!
!

!6

What technologies/tools did you use, and why them?

The project didn’t include any complex data structures or external technologies, but

many other tools were used inside of the Ruby on Rails framework. Some of the tools

that were used were rails gems, jQuery, bootstrap x-editable and jQuery data tables. I

would also say that the Ruby on Rails framework was the overall technology used

because it kept the project organized. The integrated RESTful routes were very helpful

as well. Overall, The most important concept to understand was the MVC and the Rails

Framework. Once that was understood at a high level, the overall flow of the project

came easily.

!
What was the hardest part of the project?/struggles

One of the hardest parts of the project was working with the customer. As stated

above, often the customer didn’t have a technical background and the terminology used

to describe specific details was a barrier at times. Having a customer that isn’t

exceptionally technical is difficult because they don’t always understand the project from

an internal standpoint. As a developer it’s difficult to describe what object design is to

someone who isn’t technical.

One of the most difficult parts for example, was when the user suggested that they

wanted to be able to update the location of equipment inline without having to navigate

to a form. I researched many options and came up with bootstrap x-editable for inline

editing. This allowed for a user to select an equipment location and update it by

selecting from some drop down of options. I ran into a problem when I realized that I

had to manually submit the parameters to the database. After developing a method, I

!7

thought that I was in the clear, but then ran into another issue. When I was trying to

perform a “PUT” request, when submitted through ajax, the request method wasn’t

being preserved and got switched to a “GET” request, by default. After much research, I

realized that I had to preserve the request method upon redirect by passing a “303”

status as a parameter, but it took much effort to get the feature to work.

Another difficult part of the project was the relations between objects. For example,

if a project has many equipments, you could code something such as,

“project.equipments.all” to obtain all of the pieces of equipment, but if you forgot to

make equipments plural, then the program would crash. Often the smallest errors are

the most difficult to see. Ruby on rails is all about naming conventions and often

something so simple could be your biggest fault. Even though the naming conventions

gave me trouble sometimes, I don’t have much negativity on how the MVC flows. It

makes navigation and project organization entirely simple.

Another part that was difficult was the jQuery data tables. Data tables is a library

that can be included in the application javascript file. The reason for data tables is for a

user to have the ability to search, sort, or page through sets of data in a table. I ran into

a problem when I was trying to incorporate data tables because it required an updated

version of jQuery. What I ended up doing was updating the jQuery version for the entire

application. By updating the jQuery version, other pieces of the application that were

depending on the earlier version started to break.

 For example, I remember certain aspects getting “buggy”, such as the icons on all

the date picker calendars disappeared. As more bugs and glitches started to appear

during testing, I was informed of how it was important to check with others before

!8

updating such big libraries such as jQuery versions. I then had to look into all the issues

associated with the updated version. Now I am more cautious when including and

updating libraries, as it may cause serious application bugs.

!
Was the project about as hard as you predicted? If not, where was the error?

I think that the project was a good level of difficulty. There were times where I

would get frustrated, but my greatest resource was the help of others who would get me

to draw out my thought process. Even though we live in a paperless world today, I often

found that my best development came from using a paper and pencil to draw out my

design. Along the way, i’ve realized how far i’ve come from when I first started to learn

Rails. It was also nice having previously learned PHP, and learning how Rails compares

and contracts to PHP and other languages. I hope that at some point more students will

be able to get some experience with the framework as Ruby on Rails becomes more

popular.

!
!
!
!
!
!
!
!
!

!9

!
!
!
Citations

Tamada, Srinivas. The Model-View-Controller Architecture. Digital image.

 Getting Started with Ruby on Rails. 8 Feb. 2011. Web.

!10

