Senior Project Proposal
Fall 2016
Micaiah Parker

Objective

For this project I will be creating a website dedicated to the facilitation and enhancement of “play-by-post” gaming experiences. Play-by-post is a method of playing role-playing games via online forums. The advantage of a play-by-post format is that unlike traditional table-top gaming players can enjoy role-playing games without needing a coordinated schedule or location. One can simply log in when they are available and post responses to the previous posts. A problem with play-by-posts is dealing with cheating. In most role-playing games the common mechanic for deciding success is dice rolling, but in play-by-posts it can be difficult to confirm roles. There are websites available for simulating dice rolls and recording the results, but switching back and forth between such sites and the forum where the game is taking place can be annoying, and subtract from the gaming experience. By having a dedicated site for play-by-post one can integrate the forum, dice rolls, and even game rules into a single location. There will be a record of dice rolls which will be available to the DM. Each player will also be able to see a record of his or her dice rolls.

Technologies

The main tool I will be using is Flask, a self-described Python microframework, and a handful of Flask-extensions. The site will be hosted on Heroku. I chose Heroku because it is free, fairly easy to integrate with Flask, and I have enough experience with Heroku that it won’t be a major stumbling block for the project. Git will be used for source management and uploading to Heroku. Databasing will all be done with SQL. Local (testing) databases will be SQLite and Heroku (production) databases will be PostgreSQL. Internally the databases will be connected to using SQLAlchemy which will allow for painless translation from the testing and production environments. Testing will be done with py.test, which I chose over unittest and nose for its “fixture” feature. The webpages will be constructed with Jinja2 (a Python templating language), HTML, and Foundation (a CSS framework similar to Bootstrap). Jinja2 will allow for Flask to return the same pages for users with different privileges and letting Jinja2 to decide what that particular user should see. If I have the time I’d also like to incorporate individual game rules to the system, there will probably be XML involved in storing the rules.

While I am very comfortable with Python I have done very little with Heroku, Flask, SQL, or Foundation besides simple “Hello, World” type projects and I’m looking forwards to learning these tools in the process of creating my website.

Grading

Server Side
Flask:
	Routes - 3 points
	Dynamic configuration - 3 points
	Database integration - 5 points
	Session management - 2 points
		-Using cookies to keep users logged in
	Account privileges - 5 points
	Recaptcha - 1 points
	Email confirmation- 5 points
	Total - 24
Databases:
Users - 3 points
	Campaigns - 5 points
	Characters - 5 points
	Rules - 5 points
	Rolls - 3 points
	Total - 21 points
Jinja2:
	Form macro - 3 points
	Field macro - 2 points
	Dynamic paging - 5 points
		-Allow Jinja2 to decide what users should and shouldn’t see
	Foundation integration - 3 points
		-Having macros that can detect which Foundation classes to use
	Total - 12 points
Hosting:
	Heroku - 5 points
	Local - 3 points
	Total - 8
Total: 65
	

Client Side

Account:
	Registration - 3 points
	Login - 2 points
	Add friends - 3
	Private messaging - 7
	Character creation - 5 points
	Adding rulesets - 4 points
		-Allow users to add rules to the games they would like to play
	Total - 25
Interface:
	Hover Tooltips - 2 points
	Navigation bar - 3 points
	Alerts - 2 points
	Popover character sheets - 4
	Hover rule display - 3 points
	Total - 14
Campaign:
	Forum - 10 points
	Roll records - 4
	Campaign info - 3 points
	Display character position - 4
	Admins - 3 points
	Adding/removing players - 3 points
	Health/stats recording - 4 points
	Total - 31
Total: 60

Development
Unit testing - 10 points
Git management - 3 points
Total: 13 points

Grading total: 138

Grading Scale
A: 90-100% 124-138 points
B: 80-89% 110-123 points
C: 70-79% 96-109 points
D: 60-69% 82-95 points
F: 0-59% 0-81 points	
	
