

AUTONOMOUS COLOR
SENSING DRONE

[bookmark: _GoBack]

Michaela McLeod and Paul Sampson
Computer Science Senior Project
Winter 2018

Table of Contents
Introductions . Page 2
Project Overview Page 3
Project Elements . Page 4
Hardware Components . Page 4
Software Components . Page 6
Implementation . Page 11
Conclusion . Page 11

Introductions

Michaela McLeod
I started at Northern in fall of 2014. It took me a semester to figure out what I wanted to major in, but I quickly got very involved. I graduated from the Student Leader Fellowship Program in April of 2017 where I completed my 100 hour Community Service Internship with CoderDojo906. We teach kids from the community about computers at the Seaborg Center. Every session, we have different stations for the kids depending on their interests and knowledge levels, like EV3 Lego Robots, 3D printing, Scratch, and learning other computer languages like Python. I normally work with younger kids, between the ages of 5 and 7, teaching them the basics of computer programming. Through my time at Northern, I have found my passions, and this is one of them! I love working with kids and being able to teach them about STEM is the best of both worlds to me! Through my time at CoderDojo906 and NMU, I have learned that I really enjoy working hands on with things and that I also really enjoy working with robots!
Paul Sampson
I am graduating in May with a double major in mathematics and computer science. I am especially interested in the fields of robotics and AI, which is what attracted me to this project. I hope to one day leverage the skills I’ve learned at Northern to find a job working on robots at the likes of NASA and Boston Dynamics.

Project Overview	

We both had an interest in robots, so we knew we wanted that to be our area of focus for our senior project. We had a few ideas, but narrowed down our goal to create an autonomous color sensing drone. The drone would take off, fly over a pre-made colored grid, and land on a specific colored square. As far as we could find, there is not a lot of research done with autonomous drones. So, needless to say, we have learned a lot this semester! It was a lot of trial and error to see what worked or how to improve things.
In short, sensors attached to the drone transmit height and detected color to the controller. Using the data received and algorithms written, the controller directs the drone to the desired position.
Turns out, that it is difficult to get a drone to hover in one place. We tried many different methods, but narrowed it down to one:
The camera we are using detects color and something called “color codes.” These are squares of colors, grouped together, and arranged in different orders. When the camera detects a color code, it also tells you an angle estimate.
We set up a target type shape with different color codes. This will always point the drone to the center of the circle and we can control it to go somewhere else from there.
This project took a wide range of skills and was a huge learning experience! We learned things we never would have thought! Among many other things, Paul is now an expert crafts person, and very proficient using a hot glue gun.

Project Elements

Hardware pieces that we used in our project include: a drone, Arduinos, transceivers, camera, sonar sensor, and servos.
Drone
Paul had a small SYMA drone that we started our project with. This one was a great start, however it did not have enough power to carry all of the sensors that we needed. We tried taking the drone apart in order to decrease the excess weight and therefore increase possible payload. We took off the top plastic piece and even attempted making a paper bottom piece. The drone was ripped to shreds and we decided it would be best to get a bigger drone with more power. Currently, we are using a Force1F100 Ghost Drone. This one has brushless motors and is powerful enough to carry everything.
Single-board Computers
Our setup involves two Arduinos. We have an Arduino Nano wired up to sensors, all attached to the drone. We have an Arduino Mega wired up to the controller on the ground. The Arduino Nano takes in color codes, calculates their average angle, and sends the height, angle, and color code signature to the Arduino Mega. The Arduino Mega has many algorithms to calculate how the drone should fly given this information. It also uses algorithms we wrote to adjust accordingly for sudden movements and other special cases.
Transceivers
To allow the two Arduinos to communicate and use each other’s data, we are using NRF24L01+ wireless transceiver modules. These transmit and receive information using radio frequency signals.

Camera
To sense color, we decided to use a Pixy CMUcam5. You can train this camera to recognize seven different colors. When it detects an object of a predetermined color, it measures the size of the color block and the cartesian coordinates of its center. The camera also can recognize the angle of color codes. We found this to be very useful in directing the drone where to fly. We ended up using color codes arranged in a target type shape. Having them arranged in this shape, they point inward towards the center. This allows the drone to easily be directed to the center using the detected angles of color codes.
There are various setting you can change on the pixy. The camera can auto adjust the white balance of the image when it turns on. This is good, especially if you change the type of light you are using. However, this can also cause issues. As we were working on our project throughout the day, window light would change over time, affecting the camera’s ability to detect color codes. One option is to “retrain” the camera to detect the colors as the light changes. Another option that we found was adjusting inclusiveness of color codes. We found these to be extremely useful. First, you can change the filtering range for each color in your color code. This allows you to change the shades of the color that are detected to be broader or more specific. For example, with a high enough inclusion level, the camera thinks that neon pink and neon orange were the same. But, if you decrease the inclusion level, it can accurately detect the difference between the two.
Sonar Sensor
The most accurate way that we found to detect the height of the drone was to use a sonar sensor. Originally, we tried to detect the height of the drone using the pixy camera. If it saw a blue square for example, it would take the (x, y) coordinates for that. We found the average size of a square at various heights. However, because the size of the pixy image is 319 x 199 pixels, the image would not always show the entire square. Due to this in combination with having a more powerful drone, we decided to use a sonar sensor. The new drone could carry the extra weight and measuring the height by using sound waves to find the distance to the ground was more accurate.
Servos
We are using four servos to move the joysticks on the drone’s controller. We hot glued the arm of one servo to the body of another. These two linked servos allow for two-axis movement: each joystick can be moved over its full range of rotation. This allows for complete horizontal control, along with throttle and yaw. The servos arms were then glued to LEGO Technic bars and attached to the controller joysticks.

Along with all of the hardware that we are using for our project, there are also many software things that we learned about. We used I2C Communication Protocol, created a Joystick library, and other algorithms to help the drone fly correctly!
Peripheral Control
Each device controlled by the Nano had its own unique wiring scheme and communication protocol. It was often difficult to make these disparate elements work together coherently. The wireless transmitters used Serial Peripheral Interface (SPI) for hardware connections along with a simple pipe read/write system in software. These were initially very difficult to get functioning, as the 3.3V output from both the Nano and Mega was too low in amperage to adequately power the transmitter. Eventually, we found a baseplate with built-in capacitors that was capable of taking 5V power. This solved the problem.

[image:]
	Fig 1. Schematic of Mega and Nano hardware connections for transmitters. Source: howtomechatronics.com
The sonar communicated very simply with the Nano, without any kind of protocol at all. It simply waited for its input pin to be pulled HIGH; when this happened, it would send a sonar pulse from its transmitter speaker. When the receiver speaker registered a rebound pulse, it would pull its output pin HIGH for several milliseconds. By calculating the time elapsed between the output and input HIGHs and multiplying by several predetermined constants, the Nano could determine how far the sonar pulse had travelled. This made finding the height of the drone relatively simple.
The Pixy camera came with a custom-built cable that plugged into the Pixy’s output pins and the Nano’s SPI bus. This initially made communication simple, as all of the default Pixy methods use SPI. However, we discovered that the Nano is only capable of communicating with one peripheral using SPI at one time, as all SPI pins are interconnected. This meant that if the radio transmitters and Pixy both tried to communicate with the Nano in the same program, they would overwrite each other and neither would work. We briefly experimented with changing SPI constants on the fly in order to switch between the two, to no avail. Eventually, we decided to use an optional I2C Pixy library. I2C, or Inter-Integrated Circuit, is a different communication protocol than SPI. For our purposes, they were virtually indistinguishable, but crucially I2C used different pins on the Nano than SPI, which meant that the two could be used alongside each other. We had to make our own hardware connections, as no I2C cable existed, but once connected the radio and Pixy worked in harmony.
The Pixy transmitted a series of “blocks” to the Nano, where each block was the angle and Cartesian coordinates of each color blob seen on screen. Reading this data was as simple as creating a global Pixy object in the Nano code and iterating through its blocks element.
Sent Data
The Pixy detects a number of color codes, each with their own angle and signature. The Nano finds the average of all detected angels to find the approximate angle to the center. It also records the signature of the color code closest to the center of the screen, and therefore the code the drone is closest to hovering over. It transmits these, along with the current height, to the Mega.
Joystick Code
Given a color code and an angle, the Mega knows both the drone’s current position and the position of the center relative to it. With this knowledge, it calculates how far the horizontal control joystick must move in each direction in order to move the drone in that direction. It also moves the throttle up or down to adjust the thrust. In the picture below, if the drone sees a yellow color code at the point marked with an X, it knows that it is two units away from the center with a defect of 𝛳.

[image:]
From here, it computes the length of the theoretical right triangle with the distance measure as the hypotenuse. The ratio the legs form with the hypotenuse give the percent of maximum displacement the joystick should move in each direction: if the leg is very close in length to the hypotenuse, most of the needed movement is in that direction. If the leg is very small compared to the hypotenuse, not a lot of movement must be done in that direction.

[image:]
In the example above, the length of side x would be acos(𝛳)*2, and the length of side y would be asin(𝛳)*2. The distance the joystick needs to move in the x direction would be x/2 * (max movement), and the distance the joystick needs to move in the y direction would be y/2 * (max movement).
Additionally, we kept a record of previous codes and angles seen. By comparing previous locations to the current location, along with time passed, we are able to calculate the drones velocity. If the velocity exceeds a predetermined constant, the joysticks move to counteract it and bring the drone to a standstill before resuming seeking the center.

Implementation

One of the most difficult parts of the project is controlling the drone while it is flying. As a human controlling it, you make many small adjustments and some of those are hard to predict and program. We came up with many algorithms that help with this. Examples include: hover adjust, height adjust, and velocity adjust.

Conclusion

	We started with little to no knowledge of Arduinos, control systems, robotics, computer vision, or anything else involved in this project. As such, this was a massive learning experience for both of us. Starting from nothing, and with little previous research to go on, we designed an autonomous drone controller setup, built and programmed a custom sensor suite, and created a control device with servos. We programmed complex algorithms to control the drone’s flight, and implemented multiple arena designs in order to give the sensors the most informative data possible. As such, we have made great progress over the past semester. Although the drone does not navigate to various squares, since it is capable of navigating to the center of the circle, it would be trivial to implement a grid positioning system. Since we have learned a lot, and since we have laid the framework that would make our original objective possible, we believe we have still earned a high grade.
Page | 5

image1.png
Arduino Mega - NRF24L01
3.3V-vCC
GND -GND
8-CSN
7-CE
52-5CK
51-MOSI
50-MISO

Arduino Uno/ Nano - NRF24L01
3.3V-vCC
GND - GND
8-CSN
7-CE
13-SCK
11-MOSI
12-MISO

image2.png

image3.png

