Matt Murphy

CS480 - Dr. Andy Poe

Senior Project Paper

Monday, April 20, 2003

Command Shell for the Java Virtual Machine

In their senior year, Network Computing students are required to take the course CS480 in which they design and develop their own contribution to computer science. At last my time has come and this (required) paper will serve as a type of narration, helping onlookers understand what, why and how I did what I did. “But what happens if you can’t get it done in time?” Just like any project (whether educational, recreational or professional), it is expected and probably hoped for that students will run in to problems along the way. I, of course, was no exception to this rule. Though I did not have problems with time constraints, other technical problems came up during development. These problems, their solutions, what I learned from them, and any further conclusions I came up with are also accounted for in this document. Additional information can be found in the two accompanying documents: the “Javadocs” and the project proposal. Hopefully, anyone intending to do something similar to my project can use this submission as a reference and a guide, learning from someone else’s experiences.

What is the project?

Simple in theory but not so simple in implementation, the project is to create a command shell for the Java Virtual Machine. This would allow users to execute Java and system applications from a command line similar to a bash shell for Linux. Unlike typical system command line execution (“java classname”) when the application exits, the virtual machine will not terminate, thus allowing information to survive from execution to execution.

Why would you do this?

This is an important question that begs a thorough answer. Therefore, it’s important to first give a bit of background information.

In industry, Java developers often find themselves working on large business-oriented (possibly web based) projects. Many of these projects involve several applications running concurrently in the same virtual machine and sharing data with one another through static methods. The generic and most common way for Java applications to be executed is through a standard static method (main(String[])) invoked directly by the virtual machine after startup. This presents a problem to developers of large multi-application projects because it limits one application to each JVM. So how do they do it? Well, some brilliant people thought up the idea of application servers. Simply put, an application server is itself an application that in turn executes other applications concurrently within the same virtual machine. Many application servers will not invoke the standard static main method and instead require the applications to implement a proprietary interface. Still there are a handful of application servers that offer the robust solution many businesses are looking for (ex. BEA’s Weblogic and IBM’s WebSphere). However, no matter the solution, robust or simple, application servers require installation, configuration, and environment setup. Though, this is not necessarily a problem for businesses themselves, it can be painfully annoying to developers. In most situations and for sound safety reasons, programmers do not write and test code on the deployment server (the server machine with the installed application server and where the final version of the program will be run). This means developers will not only have to download, install and configure an application server on their local machine, but the application server has to have the same type, configuration and environment as the deployment server. Occasionally, this can take longer than writing the application itself.

Enter senior project. With a command shell to the virtual machine, Java developers could execute several applications concurrently and without exiting the JVM. This bypasses the annoying problem of configuring the local server to be identical to the deployment server. Additionally, the shell prompt is familiar to programmers and should be an easy interface for them to use. Though these were the main reasons for starting the project, other motivations contributed to formation of additional project specifications (the “while I’m at it, why don’t I…” syndrome).

The most significant feature added by additional motivations was that the static method System.exit(int) should not exit the virtual machine. Rather, the method should terminate only the application that made the call. As will be discussed later, changing the behavior of the java.lang.System class is no small feat and it is for this reason that the task (along with other very similar tasks) accounts for nearly half of the project grade. There were two reasons for making the decision to include this requirement: it might prove to be useful and the senior project would not get approved if there were not a significant challenge for the student.

How did you do it?

One way to discuss how things were accomplished would be to list each requirement individually and explain what it took to achieve each goal (Note: see attached project proposal for a quick list of requirements). However, because this paper is intended to help someone learn from my experiences I will take a more narrative approach.

Shortly after writing the requirements, I analyzed them and deduced that my project really had two parts to it: the changes to be made to the java.lang.System class and the application that would serve as the actual command shell. An immediate concern of mine was the Java language specification states that packages beginning with “java” and “sun” are reserved for use by Sun Microsystems. Not knowing how or even if I could work around this technicality, I began to examine the source code of java.lang.System.

The java.lang.System class presented me with many problems and sent me back to the drawing board on several occasions. Upon perusing the code to see what it would take to write my own version of this class, I took note of several native methods (that is, methods that are not actually executed in the virtual machine with java byte code, but with the native machine code that is actually part of the virtual machine implementation)! What had I gotten myself into? Needless to say, I hastily searched for an alternate plan that did not involve implementing these methods.

Before long, a seemingly brilliant idea struck me: a custom class loader. When an application requested the java.lang.System class, my class loader would give them my version of the class that would act as a proxy to the actual java.lang.System. Working in this fashion, I would be able to implement the methods I wanted to implement and simply have the real java.lang.System perform any native functionality and other methods I didn’t want or care to change. Because I had written several custom class loaders in the past, I was fairly confident with my knowledge of the process and got straight to developing rather than researching further. This would later turn out to be my downfall and the loss of a half-day’s work. After completing my class loader and a skeleton proxy java.lang.System class, I set out to test my progress.

java.lang.SecurityException: Prohibited package name: java.lang

Staring me right in the face was the fact that a) I had jumped right to development without first reading the source code of java.lang.ClassLoader and b) I was clearly in violation of the Java language specifications. Had this been a development project for a company, I would have shamefully returned to my boss and admitted that my bright idea was simply infeasible. However, this isn’t something I ever really intended to distribute. Who cares if it’s against specification? My grade was depending on this, so I decided that if I was going to have to at least bend the rules a little, I might as well break them a lot.

One whole day into the project and I was back at square one, but this time armed with the knowledge gained from previous mistakes. This time, I would rewrite the java.lang.System class and, since I couldn’t load it through my own class loader, I would place it directly in the runtime library of the virtual machine, rt.jar. The idea was to move the content of java.lang.System to edu.nmu.system.OldSystem and rewrite java.lang.System to extend edu.nmu.system.OldSystem with the changes I wanted to implement. However, before coding, I intelligently decided to perform a few tests.

Can java.lang.System extend another class? I didn’t know the answer to this, so I tried it. As it turns out, the answer is no. Upon investigation I discovered that the java.lang.System class is actually loaded before the Java Virtual Machine is fully initialized (which makes sense because it is an integral bridge from the virtual machine to the byte code being run by it). When a class extending another class is loaded, the extended class must be loaded as well. Because the JVM hadn’t finished initialization, it was unable to perform this operation. This was not a major setback however; class extension can be easily simulated by delegation (a simple design pattern identified by Mark Grand in his book Patterns in Java).

As I wrote the code for my new System class I tested each method after completion. It wasn’t long before I ran into my next roadblock. Many of the java.lang.System methods are called during VM initialization, including those I wanted to overwrite. Other classes involved in VM initialization expected these methods to act a certain way; my implementation would simply not cut it. That’s when I noticed a call to the method sun.misc.VM.booted(). This method was called to let the system know that the VM had finished initialization. And if there is a “set” method, then there must be a “get” method. Sure enough, it did not take me long to find sun.misc.VM.isBooted(). By utilizing this method, I would be able to provide the VM with the functionality it requires during initialization while changing the method implementation for outside calls after the initialization had completed. In other words, it was the standard if-then: if we are booting, call the method on edu.nmu.system.OldSystem, else, do something else.

I was almost there. Only one final roadblock stood in the way of my goal. If we are booting, we can’t call the method on edu.nmu.system.OldSystem because that would require loading the class…, which we can’t do because we haven’t finished initializing the virtual machine. In the end, I finally had an architecture that worked, though it took me a few attempts. When all is said and done, java.lang.System looks very similar now to how it did before I even began. When a method call is made, we check two things: if the VM is initialized and who called us. If the VM is not initialized or our caller is of the class edu.nmu.system.OldSystem, we provide the original functionality of the method. If our caller is not edu.nmu.system.OldSystem and the VM has finished booting, we forward the call to edu.nmu.system.NewSystem, which extends edu.nmu.system.OldSystem to provide new functionality. If a method is not overridden by edu.nmu.system.NewSystem, the method in edu.nmu.system.OldSystem is used which simply calls the original method on java.lang.System again (this time the “caller” will be edu.nmu.system.OldSystem and the cycle of method calls will not be repeated). Although a bit convoluted, this final circular solution was chosen because it provided the most stability and flexibility, allowing developers to force certain java.lang.System implementations (old or new) regardless of whether or not the java.lang.System class itself was the old or new version. The java.lang.System class, in a sense, became the “default” system that could be overridden if the application was aware of the edu.nmu.system.OldSystem and edu.nmu.system.NewSystem implementations.

At long last (end of day 3), the design was drawn in ink and I began writing code. Unfortunately for education, I did not run in to any problems that even remotely compared to overriding the java.lang.System class. Once I had a working command shell that ran applications from a classpath-path, writing ls, cp, rm and the rest of the command requirements was as simple as writing small independent programs, each doing its own specific task. Things progressed steadily and uneventfully for the rest of the two-week duration of the project. The only other roadblock I came across was an impassable one and easy to identify as such, therefore it did not break my stride.

I had hoped to be able to browse the package structure just like the file directory system since they are mathematically equivalent. The problem, however, is that class loaders only look for and identify a class or package when they need to load it. In other words, unless the class loader is custom built, it will only know that a package.one.ClassA class exists if you explicitly ask for it. There is no listing method in java.lang.ClassLoader equivalent to java.io.File.list().

If you had it to do over again, what would you do different?

I can’t argue with the fact that I learned a lot doing this project, and on many different levels. In the sense that hardware is low level and specifications are high level, I have grown in every area of the spectrum. And, of course, if I had it to do over again, I would tell myself to do a few things differently.

“First off, do not get caught up in the “while I’m at it, why don’t I…” syndrome. Draw up the scope of the project before its requirements instead of the other way around. This way you can be sure you are aiming for a single goal.”

“Secondly, the order is research, design and development. Do those things in any other order and pay the consequences.”

“Finally, make it harder. Really challenge yourself. In all seriousness, though the project was both difficult and large (producing lots of code), You were able to finish it in the first two weeks of the semester. It would be nice to try and really tackle something. Try an operating system (okay, just kidding).”

Learn anything else?

As a matter of fact, I did. One unexpected side effect was that I learned the importance of having the services of an operating system at your disposal. As I was writing the code for and associated with edu.nmu.system.SystemThreadGroup I kept wishing that it would have already been done for me and knowing that this was really the job of the operating system. This lead to the realization that a command shell for the Java Virtual Machine was not in fact like a bash shell for Linux. Linux is an operating system, while the JVM is a machine. Though the java and sun packages provide many of the services an operating system is responsible for, the implementation cannot be called complete. This fundemental difference simply caused me more work, having to complete the picture myself (that is, not complete everything, but rather just what I needed for my project).

In Conclusion

In the end I believe the project to be a success. If I were to remove the half of the project that overrides the java.lang.System class (thereby letting it once again adhere to specifications), I believe my application would be useful to both Java developers and researchers studying virtual machines. I certainly plan on using it for my own development purposes.
