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1 Introduction

Note: There may be some confusion rergarding the use of A*
in regards to both the lattice representing the plane and the
pathfinding algorithm. for the purposes of this paper, A∗

n repre-
sents the lattice and A* represents discussions about the pathfind-
ing algorithm.

The goal of this project is to create a Java GUI tool that allows for the
representation of non-linear dynamics in the A∗

n plane. The tool allows for
the creation of attractors and repellers along with a series of ”vehicles” that
will navigate the space based on their specified targets. The paths that are
created will represent the vector fields of the plane, and basins and peaks
should appear around the attractors and repellers. It is the goal of this
project to be able to abstract the code to work with a number of different
uses.

2 A* Pathfinding

Not all those who wander are
lost.

J.R.R. Tolkien

A* Pathfinding is a solution to the problem of finding the best path through-
out some search area. In this case, the search area is the hexagonal lattice
that makes up the 2-dimensional plane of our simulation. The optimal path
will be the path that minimizes the function f(n) = g(n) + h(n) for every
node in the path. g(n) represents the cost to get from the initial node to the
current node. h(n) is the heuristic function which estimates the cost to get
from the current node to the end.

The heuristic in A* pathfinding is the estimated cost to move from any
given node to the end node. There are a number of different functions that
can be used to calculate h(n). In the program, I used both a heuristic of
h(n) = 0 and h(n) = ∆y + 2 ∗ (∆x− 1) to calculate the pathfinding. When
h(n) = 0, A* turns into Dijkstra’s Algorithm. While not being as efficient,
Dijkstra’s promises to return the optimal path. Listing 1 shows the example
code using this h(n). This second h(n) allows for a calculated heuristic close
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to what the path would be assuming a regular set of hexagons with the
same weight. A* with a heuristic is more effective than Dijkstra’s because
A* can eliminate nodes who have a large f(n) = g(n) + h(n) faster than
when f(n) = g(n). However, if h(n) > f(n), A* will sometimes return a less
optimal path but at a faster rate.

1 while (!openNodes.isEmpty()) {

2 Hexagon current = minimumFScore(openNodes, fScore);

3 current.setColor(Color.GREEN);

4 if(current.equals(goal))

5 return createPath(cameFrom, current);

6

7 openNodes.remove(current);

8 alreadyVisited.add(current);

9 for(Hexagon neighbor : current.getNeighbors()) {

10 if(alreadyVisited.contains(neighbor))

11 continue;

12

13 double tGScore = gScore.get(current) + neighbor.getWeight();

14 if(!openNodes.contains(neighbor))

15 openNodes.add(neighbor);

16 else if (tGScore >= gScore.get(neighbor))

17 continue;

18

19 cameFrom.put(neighbor, current);

20 gScore.put(neighbor, tGScore);

21 fScore.put(neighbor, 0.0);

22 }

23

24 }

Listing 1: Sample Java Code of A* Pathfinding with h(n) = 0
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3 Non-linear Dynamics

Figure 1: A vector field created from
the differentiation of the trajectories of
the state space

The study of Non-linear Dynamics is
a subset of Chaos Theory, the the-
ory that certain processes cannot be
modelled but only estimated. Non-
linear dynamics studies the change
within a state-space (the space in
which we are observing) over some
set of parameters (time, tempera-
ture, etc). Once the state space
has a number of trajectories exist-
ing within it, a vector field can be
constructed from the differentiation
of these paths. Once the vector field
has been created, a trajectory can be estimated once given a starting posi-
tion. Non-linear dynamics offers a number of advantages in modelling real
world behavior, however one of the most prominent is the continued modifi-
cation of the vector field. After a sufficient number of trajectories have been
observed, a vector field can be created for modelling purposes. However, if
anything about the state space changes, the system model can be updated
with new trajectory data that is collected.

Figure 2: A vector field with an at-
tractor curve and repeller point

While the study of non-linear dy-
namics can goes much deeper than
simple vector fields, the focus of the
project was utilizing the concepts of
repellers and attractors. An attrac-
tor is a point or curve that is the
center or limit of a subset of the vec-
tor field. A repeller, is the oppo-
site where the vector field limits in
the opposite direction. When look-
ing at the trajectories on the state

space, attractors tend to create valleys or troughs where the trajectories flow
“down,” and the repellers create peaks as the trajectories flow away from
the center of the repeller. Figure 2 shows an example of a cyclic vector field
where the trajectories enter into the area below the attractor curve and are

3



then repelled back up away from the repeller point.1

4 A∗n Lattice

Aggregates form a nested
sequence of tessellations of
n-space.

Kitto et al.

4.1 Permutahedron

Figure 3: The second order
permutahedron bisecting the
square.

A permutahedron is geometric object of
flat sides. The permutahedron of order n
contains n! vertices and exists in the n-
dimensional space. The first order permu-
tahedron can be thought of the point on a
line. The second order permutahedron can
be thought of as the line spanning from (1,2)
and (2,1). The third order permutahedron
represents the hexagon that bisects the cube
with side length 2. This pattern continues
up to infinity with the dimensions of both
the shape and the object it exists within in-
creasing. For the purposes of this program
we will be focusing on the standard hexagon,
or the permutahedron with order 2. For the
sake of simplicity, the coordinate system will

be rotated so the viewer is orthogonal to the center of the hexagon, resulting
in a 2-dimensional plane.

4.2 Aggregates and the A∗n Lattice

A∗
n represents the lattice made up of the tiling of a space with permutahedra

of order n. The tiling of a space with hexagons can be constructed in several

1Abraham; Shaw. Dynamics: The Geometry of Behavior. Addison-Wesley Publishing
Company. 1992
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different ways. This tiling, commonly known as a honeycomb lattice, has
several advantages discussed later, however it runs into challenges with the
accessing of cells and traversal of the lattice. Kitto, Vincem and Wilson
in the 1991 paper “An isomorphism between the p-adic integers and a ring
associated with a tiling of N -space by permutohedra” provide new ways for
fast addressing and retrieval of cells in the lattice. In A∗

2, an addressing
system of cells can be created using the generalized balance ternary (GBT2)
where the address is a sequence s1s2...sk where 0 ≤ si ≤ 6 i = 1...k. This
address is known as the canonical address. The canonical address, which is
in Z/7Z can converted to a standard address, presented as a series of vectors
within Z/2Z. The following example represents the hexagon with canonical
address 342 as a standard address:

342 =

1
1
0

0
0
1

0
1
0


To understand the addressing system graphically, the important thing in

the construction of the lattice is the aggregate. Figure 4 shows the aggregates
of levels from 0–3 with examples of canonical addressing within the aggregate
level. The highlighted section represents the n − 1 central aggregate. To
navigate between aggregates, we define the (n+ 1)× (n+ 1) matrix B:

B =


2 0 · · · 0 −1
−1 2 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 2

 B2 =

 2 0 −1
−1 2 0
0 −1 2



The inverse to this matrix B is given by:

B−1 = (1/q)(bij) bij =

{
2n+j−i i ≥ j
2j−i−1 i < j

}
q = 2n+1 − 1

To get the cell x ∈ A∗
n using the canonical address s1s2...sk you must first

convert the canonical address into the standard address t0t1...tk−1. Then:

x = V (t0 +Bnt1 +B2
nt2 + · · ·+Bk−1

n tk−1)

where if V is the n × (n + 1) matrix whose columns v0, v1, ..., vn generate
the lattice A∗

n, the result is the vector equation that gives the cell x. The

5



example given by Kitto et al shows the process of finding the location of the
cell 362 in A∗

2:

x = a0v0 + a1v1 + a2v2

a0a1
a2

 =

1
1
0

+B2

0
1
1

+B2
2

0
1
0


Which gives x = 1 ∗ v0 + 7 ∗ v1 +−3 ∗ v2. Using B−1

n it is possible to take the
vector equation of a cell and get the standard address.2

(a) Level 0 (b) Level 1 (c) Level 2

(d) Level 3

Figure 4: Aggregates at levels {0, 1, 2, 3} with example addressing

2Kitto; Vince; Wilson. An isomorphism between the p-adic integers and a ring asso-
ciated with a tiling of N -space by permutohedra. The University of Florida, Gainesville.
1991.
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4.3 Why Hexagons?

Hexagons were chosen for this application because they offer a number of
advantages over other geometric shapes. First, the lattice, commonly referred
to as the honeycomb lattice, can completely cover a plane with no overlap or
other geometric shapes. Secondly, the hexagon has more edges than a square,
which allows it to closer approximate a circle. In the real world, there are
infinitely many directions that can be moved from a point. Although the
hexagon is still bounded by 6, it is more effective at this modelling than
a square grid. Finally, a hexagon has 6 equidistant neighbors, that is the
length of the line between the center of the hexagon to the center of any of
its 6 neighbors is equivalent for all of the neighbors.

Another reason for the choice of hexagons is their applications in image
processing. One of the long-term goals of this model is to be able to use it
to process image data. The reasons presented above make a good case for
their effectiveness, but also that “biological and opthalmic observations on
the human eye indicate that a hexagonal packing of retinal sensory elements
has evolved in nature. This was a motivation for the study of hexagonal
sampling schemes for computer vision covered in this chapter.”3

5 Automata

A common field of study in both robotics and computer science is the concept
of an automaton, a self moving or navigating item. Originally in the planning
of the project, I called the items navigating the hexagonal lattice Cellular
Automata. I originally thought that that would be what I was working with
because cellular automata are often thought of in relation to some sort of
plane. However, the vehicles that I was dealing with more closely resembled
Braitenberg vehicles.

A Braitenberg vehicle is a vehicle named after the Italian-Austrian Cy-
berneticist Valentino Braitenberg. “In Vehicles, Braitenberg describes a set
of though experiments in which increasingly complex vehicles are built from
simple mechanical and electronic components. Each of these imaginary ve-
hicles in some way mimics intelligent behavior.”4 Braitenberg’s thinking was

3Staunton. Hexagonal Sampling in Image Processing. University of Warwick Coventry.
1999.

4Hogg; Martin; Resnick. Braitenberg Creatures. MIT Media Laboratory. June 5, 1991.
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Figure 5: Examples of two simple Braitenberg vehicle

that from the interaction between sensors and mechanics, intelligent behav-
ior would emerge. Figure 5 shows two examples of the simple vehicles with
motors on the two back wheels and sensors on the front. The sensors in these
pick up the strength of the light emitting from the light source and control
their attached motor which will either cause the light to attract or repel the
vehicle.

Similar to these simple vehicles the vehicles in my program rely on their
ability to sense the weight of the hexes around them when making their
movement choice. Similar to the attraction and repulsion qualities of the
light, the low troughs and high spikes of the hexagons have similar effects on
the motion of the automata navigating this plane.

6 Implementation

6.1 Graph-based Approach

After running into some issues with the mathematics behind the A∗
n lattice I

set up the world similar to a graph. Each hexagon has 6 neighbors which are
stored in an array. The SquareWorld implementation was what this became
to be known. The SquareWorld is constructed with a number of rows and
columns and is indexed from the upper left going row by row. The address for
a hexagon at (x, y) can be found with the equation index = y∗COLUMNS+x
where COLUMNS is the number of columns of the world. This approach
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works well and is easy to comprehend and implement because it is similar
to the usual Cartesian Coordinate System. However, it suffers from slower
traversals by needing to rely of the neighbors instead of vectors produced
within the before mentioned lattice. Having the SquareWorld also does not
take advantage of the aggregate tiling that makes the lattice much more
scalable while preserving the representation of a circle that many programs
use hexagons for.

However, this approach did have it’s upsides. While vector based lookup
was not as easy to implement, being a graph made the A* Pathfinding Al-
gorithm very easy to implement and it worked very well with navigating
between the attractors and repellers. The attractors and repellers were cre-
ated using a recursive algorithm which expanded to the hex neighbors using
the function:

w(x) = 1 + 2 ∗ tan
−1(.1 ∗ x)

π

Where w(x) is the new weight of the hexagon where x is the integer weight of
the hex. This function was chosen, as it is a map from (−∞,∞) to (0, 2). As
each ring of hexes is affected, x = log2(x). So the weight of each ring follows a
logarithmic decay. To produce an attractor, the weight is set through w(−x)
so that attractor weights are less than 1 while repeller weights are greater
than 1 with every hexagon having a default weight of 1.

6.2 Utilizing the Lattice

The hardest part of the program, the implementation of the A∗
n lattice, was

the part that took the most time, and that is still not entirely complete. The
lattice class currently has methods for the conversion between the standard
and canonical addresses. After creating a matrix class for dealing with the
vector and matrix calculations of the space, it is possible to convert between
the standard address to the vector representation of the cell and back again.
Unfortunately, the issues that are arising have to do with the display portion.
After drawing the Level 1 aggregate, I am having trouble translating the
lattice vectors back into a coordinate system that can be used for drawing the
successive vectors. This coordinate mapping is something that would greatly
increase the speed of the software and is something I will be attempting to
complete the week before the presentation.
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7 Coding Practices

7.1 Tools

Java

I chose Java for this project for a number of reasons. Java is an object
oriented language and offers easy implementation of interfaces and abstract
classes, which I took advantage of. It offers a number of pre-built libraries,
specifically graphics ones, that I was interested in utilizing. I also wanted to
work with Java as it is the language much of my work for my new job will be
in. Finally, Java GUI frameworks are all cross platform which was important
since I was developing on both Windows and Linux.

JavaFX

After researching and creating an initial GUI with Java Swing, I ended up
switching to JavaFX for a number of reasons. I chose FX primarily for the
vector drawing canvas capabilities. The switch to FX required a lot of new
learning, but it ended up being very efficient. As the successor to swing,
FX relies on a Model View Controller architecture. I found FX did a lot
better job than swing at abstracting the view and controller code. Similar to
Android layout files, the view lies in a .fxml file, an xml stylesheet that has
callbacks to methods in a specified controller file. This abstraction allows for
the user to interact with the data model and for the controller to update the
view separately.

<Button text="Save Image" onAction="#handleSaveButtonAction"

fx:id="savebutton" focusTraversable="false"/>↪→

@FXML private Button savebutton;

@FXML private void handleSaveButtonAction(){}

Listing 2: Sample Button in JavaFX

In JavaFX, the FXML file contains the layout information. As seen in
Listing 2 the onAction tag refers to the @FXML method name within the
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controller. The button object can be accessed through the @FXML button
declaration. Another advantage to JavaFX is the ability to capture the state
of the Canvas as an image. This ability provided an easy way to save and
view tests that were run.

JUnit

For the unit testing, I used JUnit4. JUnit offers a strong test suite for writing
unit tests. I wrote tests for all of the specialty classes I created. I also tested
edge cases, particularly object comparisons and pathfinding issues. JUnit4
offers a number of tools such as setup and teardown for both all tests and
individual tests. As shown in Figure 6 JUnit4 and IntellijIDEA work very
well together to run and review tests. The tests were also the most robust
and complete I had ever written, covering close to 150 lines of code. Listing
3 shows two example unit tests.

1 @Test

2 public void testHashMap(){

3 DefaultHashMap<Integer, Integer> map = new

DefaultHashMap<>(Integer.MAX_VALUE);↪→

4 Assert.assertEquals((Integer)map.get(new Integer(4)),

(Integer)Integer.MAX_VALUE);↪→

5 }

6 @Test

7 public void testNullHex(){

8 Hexagon nullHex1 = Hexagon.nullHexagon();

9 Hexagon nullHex2 = Hexagon.nullHexagon();

10

11 Assert.assertEquals(nullHex1.isNull(), true);

12 Assert.assertTrue(nullHex1.equals(nullHex2));

13 Assert.assertEquals((double)nullHex1.getWeight(), Double.MAX_VALUE,

0);↪→

14

15 }

Listing 3: Example from selected Unit Tests
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Figure 6: JUnit Testing within Intellij

7.2 Project Structure

I focused on creating a well structured object-oriented program. I also wanted
to keep my methods lengths down. While I did not hold myself strictly to
the 10-lines or less rule, I did try my best to pull code into a new method
if it was getting too long. The final result of this was much cleaner looking
code. In the end, the code was some of the best that I had ever written. I
held true to Object Oriented Design, the MVC architecture, and a number
of various patterns.

Another effort I made was to treat the project like an industry project. I
tried to effectively utilize git, especially while working from different devices.
I focused on creating helpful and informational commit messages, and I only
ever pushed when all unit tests passed. I kept all development away from the
master branch, and after each merge ran all unit tests again. A tool I used to
help with tasking was Trello, a free kanban style task board. Although I was
the only ”employee” I used Trello to manage upcoming tasks and features.

7.3 Coding Patterns

Below are a few code samples from some specific patterns represented.

Singleton and Null Object Pattern
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1 private static Hexagon nullHex;

2 private Hexagon() {

3 isNull=true;

4 }

5 public static Hexagon nullHexagon(){

6 if(nullHex == null) {

7 nullHex = new Hexagon();

8 }

9 return nullHex;

10 }

Listing 4: Example of the Null Object and the Singleton Patterns combined

Visitor Pattern

The visitor pattern was used for both drawing with Java Swing and JavaFX
and for printing information to the terminal.

1 @Override

2 public void visit(Hexagon h) {

3 System.out.print(h.getSquareIndex());

4 }

5

6 @Override

7 public void visit(SquareWorld w) {

8 for(Hexagon h : w.getHexes())

9 h.accept(this);

10 }

Listing 5: Print visitor example

Observer Pattern

The Observer Pattern played a large part in the MVC design that I was
following. When the model, the hexagonal world, updated, it called notified
it’s observers, the view which then ran the appropriate visitor to produce the
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output. Java makes the Observer Pattern extremely easy to implement with
the built-in Observer and Observable classes.

1 @Override

2 public void update(Observable o, Object arg) {

3 redraw();

4 }

5 private void redraw() {

6 clear();

7 gc.scale(scale.getK(),scale.getT());

8 scale = new Tuple<>(1.0,1.0);

9 visitorFXML.visit(world);

10 }

Listing 6: Observer Pattern Example

8 Personal Outcomes

8.1 Computer Science

Over the course of this project, I have grown strongly in three areas. First,
in my knowledge of Java and what it has to offer. I had much preferred
C++ for Object Oriented Programming up to this point. However, my work
with Java has made me respect it much more. I have gotten used to utilizing
interfaces and abstract classes in Java. I have also gotten better manipulating
instances of classes without needing to use pointers directly. As my job I will
be starting uses a lot of Java, I am glad I chose Java as the language of
choice.

Secondly, I have gained much more experience with UI design. Although
the UI is rather simple for this project, my research into both Swing and
JavaFX taught me a lot about MVC design and techniques. I learned how
to properly access items in a view and how to manipulate the data. Finally,
in reading the documentation I grew in my knowledge of UI best practices,
how to structure and format the user experience.

Thirdly, I was able to work on a project as if I was working with a team.
Although I worked on my own, I focused more on design methodology and
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unit testing than I ever have outside of class. I effectively used git and unit
tests to create a good code work flow. My extra research into the patterns
and design methodology has definitely made me a better programmer.

8.2 Math

One of the largest outcomes for me was the experience of applying my knowl-
edge from advanced mathematics classes to a real application. I had seen
Abstract Algebra applied in several other ways during my classes. However,
this project gave me the chance to utilize Abstract Algebra in my computer
science class. It was very clear in the programming that the difference be-
tween the graph based approach and the mathematical lookup approach was
huge. Being able to access a specific address in constant time along with
converting between an address and a vector of direction saves a lot of com-
putation time, and allows for easier construction of the plane.

An outcome for both Computer Science and Math has been my use of
LATEXfor the writing of this paper and also the presentation. Although I
have used LATEXbefore, I got to explore a large amount of packages, including
Beamer for the presentation and Tikz for drawing mathematical shapes. As
I hope to continue research in both Math and Computer Science, I am glad
that my knowledge of LATEXis improving.

9 Conclusion

Overall, I am very happy with the project. I succeeded in gaining a large
amount of information from the research that I conducted. I also feel that
the code I had written was some of the best I ever had. I held true to the
patterns that I was implementing. Although I will make some changes before
I finish on Friday, the project currently totals 1400 lines of actual code not
counting blank lines or comments. The program fulfills many of the goals I
set forth. The tool is able to create a Hexagonal plane and run automata
pathfinding simulations on it.

I am planning on continuing to improve the tool, completing the imple-
mentation of the more advanced lattice addressing. Once the base tool is
done, the data within the hexes can be changed allowing for a number of
different applications. For example, an image can be loaded in and pixel val-
ues represented by the data within the hexagons. As the automata crawl the

15



plane, they will naturally avoid the steeper gradients between colors. The
produced vector field would represent repellers along the edges of the image.
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