
Cellular Automata on Regular Tilings of

Hyperbolic 2-space

Michael Whalen

April 18, 2018

Introduction

When I started this project, I really didn’t have a good idea of

its scope nor what I’d encounter along the way. I chose to do this project

because I was vaguely familiar with hyperbolic tilings and thought they were

fascinating, that they’d be a neat playground for cellular automata. I ended

up spending the first half of the semester largely just reading textbooks and

math journals to learn how to actually construct the geometric objects I was

after. Throughout that whole time I was unsure that I’d actually be able to

complete the project and even had another project idea as backup. A couple

months in, though, everything seemed to finally click and the code started

flowing like water. I ended up switching to Python rather than C++ because

I found that most of my time was being spent struggling with quirks of the

1



language and issues with Qt’s bindings specific to C++. Python simplified

the process while preserving the benefit that I can port the code back to

C++ relatively easily.

The objective of my work is to create a platform where a user can

create and explore cellular automata on regular tilings of hyperbolic space

with minimal concern of the mathematical machinery. I’ll begin by describing

the gist of the mathematics behind hyperbolic space, followed by a brief

description of cellular automata and its relevance. Finally, I’ll discuss my

software implementation of these concepts.

Hyperbolic Geometry

At the most basic level, Hyperbolic Geometry is exactly like the

normal Euclidean geometry we’re used to, with one twist: with Euclidean

geometry, given a line and a point, there is only one other line through that

point that is parallel to the given line. In hyperbolic space, we let there

be an infinite amount. This one allowance gives way to a ton of interesting

behaviors and can be modeled in a multitude of ways. For my purposes,

I chose to use what’s known as the Poincare model as it has a significant

amount of research in it and was relatively simple to learn more about. In

essence, the Poincare model is represented by a disk, wherein ”lines” are

defined to be arcs of Euclidean circles orthogonal to the disk.

Like Euclidean geometry, in hyperbolic geometry we can examine

2



polygons. Moreover, we can create a tiling of the space using polygons of

many kinds, i.e., the space is filled by interlocking, identical shapes. This

project concerns itself only with regular polygons, but irregular polygons

could be an interesting thing to explore as well. Regular polygons are

shapes whose angle measures are uniform, like squares and pentagons in

Euclidean space. The real restriction of Euclidean space however is that there

are only three tilings of regular polygons: equilateral triangles, squares, and

hexagons. Nothing else works as there will either be overlap of polygons or

empty space. This is where the value of hyperbolic space comes into play:

there exists an infinite number of regular polygons that tile the hyperbolic

plane.

Describing Tilings

Since there are so many tilings, I needed a simple and program-

matic way of referring to individual tilings. This was done using a Schläfli

Symbol, notated as {p, q}, where p denotes the number of sides on the poly-

gon and q denotes the number of polygons adjacent to any given vertex. For

example, in Euclidean space we can represent the square tiling as {4, 4} since

squares (four sides) meet four at each vertex. The other two possible tilings

of Euclidean space are {3, 6} (equilateral triangles) and {6, 3} (hexagons).

This symbol also provides a simple way for checking if a tiling is valid in

3



hyperbolic space:

θ =
1

p
+

1

q

When θ < 1
2

the tiling is elliptic; when θ = 1
2

it’s Euclidean; when θ > 1
2

it’s

hyperbolic. These symbols lend themselves to a highly simplified software

implementation of tilings.

Constructing Tilings

So we know what a tiling is, but how do we make one? It’s actually

a question with a surprisingly simple solution, yet it took me a couple of

months to realize it through extensive reading. We can construct hyperbolic

tilings in exactly the same way that we might in Euclidean space: start

with a polygon, reflect it about each of its sides, and repeat for these new

polygons. The only real difference with hyperbolic space is the method of

reflection. Because the sides of the polygon are sections of circles, reflecting

a point about a side is the same as performing a Euclidean inversion about

the corresponding circle.

The center polygon can by found by determin-

ing one value: the distance between the origin of the

disk and one of its vertices. This distance d is then

used to find the first vertex of the polygon, which can

4



be anywhere on the circle concentric with the disk and

of radius d. The remaining vertices can then be found

by rotating this first vertex about the origin at π
p

intervals. The inital dis-

tance d is calculated from the p and q values which specify the tiling [1,

p.295]:

d = r

√
cos(π

p
+ π

q
)

cos(π
p
− π

q
)

Then, the arcs between these vertices are constructed by first gen-

erating the Euclidean circles that constitute them. For example, for two

vertices A and B, generate a third point C outside of the disk by inverting

either A or B about the disk. The perpendicular bisectors l and m for the

segments AB and BC respectively will intersect at a point D, which will be

the center for the desired circle. Then it’s trivial to construct the arc between

A and B.

To create a tile adjacent to the center polygon, reflect all the vertices

of the polygon about the common side by performing a Euclidean inversion

of each vertex about the circle that makes up that side. This makes the

vertices for the adjacent polygon and the process for generating its sides is a

repetition of the process for the center polygon.

5



Cellular Automata

Ultimately, the goal here is to use these fancy hyperbolic tilings as a

tool for representing cellular automata. In a nutshell, these are sets of rules

that govern the states of cells in some kind of tiling, where each timestep

evaluates each tile and determines its next state based on the current states

of itself and its neighbors. Typically these are represented on square grids

({4,4}) and ”neighbors” of a tile are the eight tiles that surround it. Inter-

esting behaviors may arise when we allow tiles to be strange, non-euclidean

polygons. The software I’ve created is essentially just a platform for creating

and exploring these automata in detail with a great amount of customization

and interactivity.

As examples, I’ve created two automata that can operate on any

tiling (though some tilings are more interesting than others): a version of

John Conway’s Game of Life and WireWorld. The game of life is rough

around the edges and needs tweaking, but it a simple example with two states

and basic rules for whether a tile lives or dies, depending on the number of

live tiles next to it. Wireworld provides for a more interesting experience,

where yellow tiles are a sort of ”wire” and electrons, represented by a blue

head and red tail, can travel along these wires. On some tilings this can

create pulse generators of different intervals as well as basic logic gates.

6



Software Implementation

The general structure of the program follows a Model-View-Controller

pattern; however, due to the fact that a tiling’s visual appearance is in-

timately connected with the software model, I had to combine the Model

and View components into one class: PoincareViewModel. This class is

the workhorse of the program, responsible for constructing and painting the

tiling. It requires only three parameters to create the tiling: p (sideCount),

q (adjacencyCount), and the maximum render depth, a limit on the number

of consecutive reflections. See Figure 1 on page 9 to see how the classes are

arranged for the program.

The tiling itself is a list of Tile objects, each of which is responsible

for drawing itself and generating its QRegion, a Qt representation of the

area the tile covers. Each Tile holds onto a list of neighbor Tiles and a list

of Edge objects, where each Edge is responsible for performing the actual

reflections of points/tiles. The tiling process is largely self-contained and

can be interchanged with any other viewmodel class; for instance, a simple

class to represent a Euclidean square tiling could be plugged into the rest of

the program and function fine, so long as it implements the methods of the

current viewmodel.

The PoincareViewModel is managed by a CellularController, which

is essentially the brains of the program. It manages the interface next to the

view and communicates with the viewmodel to make changes to it. Through

7



the controller, the user can specify the sidecount/adjacencycount to create

different tilings in addition to the render depth. See Figures 2 & 3 on page

10 for examples of how the UI looks.

It also holds onto an Automaton object, which is responsible for

performing the actual state changes on a given set of tiles. Subclassing Au-

tomaton is simple, with the only requirements being a list of states (QColors)

and the nextGeneration() method.

Finally, the MainWindow class has the responsibility of creating the

PoincareViewModel, creating the CellularController on that viewmodel, and

displaying them next to one another in the right proportion.

Conclusion

At this point, I’m really satisfied with how the project turned out.

I got all the major features that I was after and built it in such a way that

adding more in the future shouldn’t be too much of a hassle. By far, the

largest problem I encountered was the issue of uniquely identifying tiles. The

patchwork solution I have now is to index tiles by their hyperbolic centers as

ordered pairs. This causes issues towards the outer rim when tiles get very

small and the precision error of Python causes some tiles to be mistaken for

others. This leads to some tiles being drawn more than once which is just

unnecessary computation. The real solution to this is to identify tiles by the

reflections needed to get from the center tile to it, using a bit of group theory.

8



Then the actual comparison of generators would be done with the Knuth-

Bendix completion algorithm, which works regardless of how small the tiles

end up being. I hope that I can eventually implement this in the future, as

well as the other features that I wasn’t quite able to find time for. I’d also

like to try using OpenGL to render the tilings since it’s more optimized than

Qt’s QPainter.

I learned a ton through this experience and it really felt like I was

able to combine the subjects from most of my CS courses in one place, while

also being able to incorporate some of my math courses. This is a project

that I’ll keep plugging away at on the side for a while since I see a lot of

potential in it.

9



Figures

Figure 1: Diagram of the classes created in the project.

10



Figure 2: The UI displaying a {5,4} tiling and no fill.

Figure 3: The UI displaying a {7,3} tiling and wireworld fill.

11



Completed Points

Feature Point Value

Hyperbolic tilings of a single polygon 20

Support arbitrarily many polygon types 20

Color in the tilings according to an automaton 20

Animate changes in state 10

Supports multiple sets of rules 5

Supports an arbitrary amount of rulesets 10

Supports more than two states 5

Users can interactively change the state of cell by clicking 10

User selects cell dimensions 5

User inputs rulesets 5

User inputs possible states 3

User selects color of states 3

User selects speed of animation 1

Start/stop animation 1

Step one generation at a time 1

Can save/load states and rules 5

Can zoom in 5

Zoom without losing resolution 10

Can rotate view 10

Total Possible: 149

Total Earned: 113

Point Range Grade

100+ A

85 - 99 B

70 - 84 C

50 - 69 D

Below 50 F

12



References

[1] M. Margenstern, Small Universal Cellular Automata in Hyperbolic Spaces: A Collec-

tion of Jewels. Springer, 2013.

13


