
Ray Bartnikowski

CS 480 – Senior Project

Final Project Report

My senior project was an online quiz generator. The general requirements were that it had to be database-driven and written in a language that could interact with the database and return HTML responses. When I first settled on this project, I thought Perl/CGI would be the perfect language to write this in, given my knowledge of the language. However, my advisor suggested I switch to a language I didn’t know, so that I would learn more. At this request I switched to PHP, and I’m glad I did, because some of the features built into PHP helped make this program possible.

The first screen seen by anyone using the quiz generator (which I will refer to as QuizGen from this point on) is the login screen. It asks for a username, password, and what section of the page to view. This information is passed to a PHP script which authenticates the user and sends them on their way. For the administrative side, the user can add users to the system, edit their information, or delete them completely. The teacher side allows teachers to set up classes, quizzes, questions, and answers, as well as view grades for their classes, grade the quizzes automatically, and edit quiz grades at their discretion. The student side lets students take available quizzes, edit them if the teacher hasn’t set them to unavailable, and to view their grades.

While a lot of QuizGen consisted of copying a previous script to a new one and editing it to fit the new script’s needs, there were a few major issues that needed to be overcome to create a functional program. User authentication needed to be working, first and foremost. Then came the issues of randomizing and submitting quizzes, grading, and how to store the graded quizzes. Fortunately, the two languages used to make QuizGen, PHP and SQL, contained the necessary features to get the job done.
User Authentication

User authentication was the one problem that really made me glad I chose PHP over Perl/CGI. The first choice I had to make was whether to use Apache’s built in authentication with .htaccess files or to find a way to do it with PHP. Due to some of the requirements on the student side, .htaccess wasn’t going to be able to meet my needs, so PHP was the way to go. As I found in my researching, user authentication in PHP primarily works in three ways: from a flat file, from a database, or from an open socket. It seemed to me that the best solution would be to use the database. It would be easy to place restrictions on database access to other users, and writing changes to a database would be more efficient than writing to several different flat files.

After going to the QuizGen login page, the information is passed in three variables to QuizGen’s login script. This script will:

· Check to see that all variables have been passed. If not, it returns an error and redirects to an error page.

· Check that the requested username/password/access combination exists. If not, it returns an error and redirects to an error page.

· If authentication succeeds, it redirects to the requested page.

In the case that authentication succeeds, the login script will also set up a session. Session handling is one of the more useful features I found in using PHP. It allowed me to register global variables that could be used in every page the user visited from that point on. For example, the user’s access privileges were registered as $SESSION_ACCESS. Every page from this point on would start with a script that checked to see that a session had been started. If it hadn’t, it would send them back to an error page asking them to log in. It then checked to see that $SESSION_ACCESS was set to the same level defined at the beginning of the page. If not, it would send them back to the error page saying that they didn’t have access to the page. The error page is nothing more than a switch which takes the error code and returns the appropriate response.

On a later page, when the student was actually taking the quiz, more variables were registered with the number of questions, the class ID number, the quiz unit number, and the current question the student was answering. When the quiz was finished, these variables were unregistered. All registered variables stay global until they are either unregistered or the session is closed. The session can be closed simply by closing the web browser, just like Apache’s authentication, or by clicking on a logout link.
Randomizing Questions

The next problem I had to tackle was the issue of randomizing the questions and how I would enter the student’s answers into the database. I first started thinking about how I would do this by using two arrays. I would pull all possible questions out of the database with a SELECT query and shove those IDs into one array. Then I would select at random an ID from the array and stick that into a second array. I would do this until I reached the desired number of questions and then pull the questions based on the IDs in the second array. This procedure would’ve taken a lot of time because I would need to do this with multiple choice answers as well. The best way to do this, it turns out, was built right into MySQL. There as a function that can be used in the ORDER BY clause called RAND() which will randomly order the results.

The problem with RAND() was that it didn’t seem to be totally random. It would get to the point that the first record was the same every time. After a little bit of research I found that a seed can be placed in between the parentheses after RAND, and that people had been using the time() function in PHP to great success. I made a variable called $seed, set it’s value to time(), and used that with the RAND() function. This fixed the randomization problem.
Submitting and Storing Quizzes

It took me a while to figure out how I was going to actually let the user take the quiz. Printing out all of the questions at the same time seemed like it would be a big hassle when it came to inserting the answers into the database, so I opted for showing the questions one at a time. As I mentioned before, this ended up being a snap with session variables. Once the student chooses a quiz to take, QuizGen automatically builds the quiz and stores it in the database in the STUDENT_QUIZ table. It then registers the session variables. $SESSION_COUNT is the variable that contains the current question the student is answering. It pulls the question id number from the STUDENT_QUIZ table and the question information from the QUESTION table. If it is a multiple choice question, the answers are also pulled from the ANSWER table. If not, a text field is given to enter answers.

After the student submits the answer, it is passed on to a submission script. This script updates the STUDENT_QUIZ table to include the student’s answer, increments the $SESSION_COUNT variable, and checks that variable against the $SESSION_QNUM variable, which stores the number of questions for the quiz. If $SESSION_COUNT is greater, the quiz is ended. Otherwise, it goes on to the next question. Once the student is finished, the STUDENT_QUIZ table will contain the question number, class id, unit number, question id, the submitted answer, and how many points the question is worth. Also, after the quiz ends, the quiz specific session variables are unregistered so that the student cannot go back and try to change anything. Since all of the relevant information is stored in one table, it was easy to make a script that lets the student go back and look at a previously submitted quiz.
Grading and Storing Grades

The final problem was the actual grading of the quizzes. Since QuizGen gives the option of multiple-choice or text answers, the grading script needs to be able to differentiate between the two answer types and check them accordingly. I accomplished this by setting a field in the QUESTIONS table called ‘multiple’, which defines whether the answer is multiple choice or not.

If the answer is multiple choice, QuizGen will check the submitted answer against the correct answer id in the ANSWERS table. If a value is returned, the number of points for the answer is submitted into the STUDENT_QUIZ table in the ‘points_awarded’ field. Otherwise zero is inserted into the field.

If the answer is not multiple choice, QuizGen will check the submitted answer against the correct answer in the ANSWERS table, converting both to uppercase in the check to ignore capitalization issues. If a value is returned, the number of points for the answer is submitted into the STUDENT_QUIZ table in the ‘points_awarded’ field. Otherwise zero is inserted into the field.

After all the answers are checked, QuizGen sums up the points possible and the points awarded, calculates a percentage, and stores all of it the the GRADES table. If a teacher adjusts the student’s grade, the adjustments go in the STUDENT_QUIZ table under the ‘points awarded’ field for the question. A smaller script is rerun to sum the fields and calculate a new percentage, and the GRADES table is updated accordingly. When the student views their grades, it only pulls the results from the GRADES table matching their ID.

Conclusion

I got a great sense of accomplishment upon completing this project. I learned that PHP is an extraordinarily useful language for database-driven websites. It was nice to be able to define subroutines to do the work and to have them return variables conducive to effective error checking. I don’t know how I would’ve beaten the user authentication problem using Perl/CGI. I’m glad it was suggested that I use PHP, because I am so impressed from the language now that I am going to try and find ways to incorporate it into my own web pages.
