Renee Gleason

Senior Project Write Up

April 26, 2003

My senior project consisted of a conversion of the Testscore System on the MUSIC web server to the new PHP enabled web server. In addition my project also consisted of customizing a Windows based email server for the alumni department.

Testscore System

Introduction:

First I will cover an introduction to the Testscore System. The Testscore System is used by both Northern Michigan University professors and students. It also requires authentication to view the working model. Users of this system are generally located near the university and it is acceptable to require users to call or vist if they need help.

The need for this program came about early March 2002. MUSIC was a web server and programming environment written by programmers at McGill University. MUSIC housed Northern Michigan University's email server and one of the main web servers (http://vm.nmu.edu) used on campus. McGill had ceased updating MUSIC years ago, and finally terminated its licensing in July 2002. Many of the web based services offered to users at NMU were written in REXX (an older programming language included within). The conversion from the MUSIC system to the new UNIX based system was a major endeavor, because it also included introducing a new scheme for user authentication, user account administration, email and web servers.

System Goals and Preparation:

One of my tasks was to rewrite the Testscore System. I was free to write the system in any language available on the new system. The new server was a FreeBSD system, a more robust version of UNIX, running the Apache web server. I chose the PHP programming language over the Perl language because my coworkers were more familiar with it. The main goal of rewriting this program was to make the transition virtually invisible to the users. Every button had to have the same name and function as the previous system.

One tip that helped me when writing this project was to write down each step before beginning. Most of this program involved parsing out a data file, so to prepare I printed out several data files and took a highlighter to them. I would try to find a pattern to accommodate the different text queries. One way I accomplished this was to split up the data files in sections. On my printout I would label each section depending on what information it contained. Each section had the title “Course sequence 1721” followed by another line with the Course Id name on it. The next line contained a label for the purpose of that section. For instance I would search for the first occurrence of a Course Sequence 1721 in the file. There I would skip the next line and look in the third line at a specified location for the desired label. If the label was not found I would keep going through this until I found the section I wanted. One tricky part was how to process courses with multiple sections. All the information was stored in one file, but all of the information for section 1 was stored at the top, followed by the information for section 2.

Script Optimization:

In order to cut down on the web server usage I wrote the script with all the functions inside include files. In the main program, the index.php, I determined which script the individual was requesting. I would then check that the include file existed. If it did exist then I would load that include file. If it didn't exist, I would exit and print out an error message of the appropriate person to call. The index.php consisted of nothing other than a switch statement and loading include files. I kept all the HTML code in a few include files so that I could call the same code without having to rewrite it. I also kept track of all the environment variables in a separate file. The file contained information similar to the following:

$tempSN = $SCRIPT_NAME;

$server = $SERVER_NAME;

$pos = strrpos($tempSN, "/");

$scriptName = substr($tempSN, 1, $pos);

$login = "$PHP_AUTH_USER";

$CGI = "http://$server/$scriptName";

$INC_PATH = "/adit/inc_files";

$INS_PATH = "/adit/instructors";

$IMG_PATH = "/adit/pub/images";

$eDate = (date ("F jS, Y at h:i:s A"));

$baseDN = 'ou=People, dc=nmu, dc=edu' ;

$ldapServer = 'ldapserv.nmu.edu' ;

$errmsg = '';

All file paths are specified in this file to make the script as portable as possible. One recommendation I found was to name my include files with the .php extension. This way if someone were to try to load just the include file it would be processed as a PHP file. If I were to use the common .inc filename extension, the web server may just present my code to the screen. Another suggestion was to keep everything other than the index.php in a folder off the web tree. This was another safeguard to prevent malicious users from accessing my code. This may seem extreme but the data files used with this program included information sensitive to students grades.

The syntax I used for locating for the file was similar to the following code which checks for my connection information:

if(file_exists($INC_PATH/ldap.php”))

//$INC_PATH defined in constants

include “$INC_PATH/ldap.php”;

else

error(“ldap”) //error routine which exits with message

How it works:

Now onto the fun part, what this program actually does. There are two user interfaces with this system, the instructor “view” and the student “view.” The instructor view includes many more features than the students view, so I will start describing this one first.

Instructor View Features:

1. Listing of results files and their viewablity status

2. Three separate queries to view the data files

3. A function to email a formatted import file to their Web CT account

4. Ability to delete a selected filename

5. Make a file viewable to students

Student View Features:

1. Listing of all professors

2. Listing of all available tests for that professor

3. Output the user's score information as well as statistics for that class.

4. Output an error if their social security number is not listed in the data file.

One of the more difficult parts of this system was flinking the user name to the name and social security number. Due to the fact that two students can have the same name and since user ids are not listed, I had to query the LDAP server for their social security number. LDAP is also known as Lightweight Directory Access Protocol. LDAP is a method of accessing information on a directory server. I spent weeks trying to get this function to work and just kept getting a generic error with little explanation. After pulling out most of my hair I went and asked for help. The code looked right to my boss. We checked to make sure my computer wasn't being filtered out and that I had the correct password. When he tried a sample of his connection code it worked perfectly. We compared the files and they were basically the same. It turned out that the account I was using had one incorrect restriction placed on it. Another lesson learned: check the basics first.

Here is an example of the connection routine to the LDAP server:

function connectBindServer($serverID='Directory')

{

 $ldapServer = $GLOBALS['ldapServer'];

 $bindRDN = $GLOBALS['bindRDN'];

 $bindPassword = $GLOBALS['bindPassword'];

 $linkIdentfier = ldap_connect($ldapServer);

 if($linkIdentfier){

 if(ldap_bind($linkIdentfier, $bindRDN, $bindPassword)){

 return $linkIdentifier;

 } else {

 $GLOBALS['errmsg'] = 'Unable to connect to ' . $serverID . ' server !!';

 }

 } else {

 $GLOBALS['errmsg'] = 'Unable to connect to the ' . $serverID . ' server!!';

 }

 return 0;

}

Looking Back:

Fortunately for me this project was rather straightforward. It was basically opening the specified data file, and processing the information. The difficult part was making the script secure enough to pass the security standards where I work.

When this script was written the global variables were turned on as part of the default installation. I have since changed the code to retrieve the environment variables assuming that the global variables are turned off (which is the new default option for a fresh PHP install). Rather than using $PHP_AUTH_USER syntax. I am using the $_POST['user'] syntax.

I can't really say that I would change anything if I had to redo this project. I was very lucky that things generally made sense to me. Having separate modules made programming for this project much easier by keeping the code from becoming overwhelming.

My version of the Testscore System was in testing for one month before going live. The live version has been in place since August 2002. There have been minor modifications to my source code such as adding additional requests for different queries of different professors.

ALUMNI EMAIL SERVER

Introduction:

The second portion of my senior project was to create functions to enhance the MDaemon email server.

The alumni server is an email server offered to all NMU current and future graduates. This server offers POP as well as IMAP functions. Users of this server are located all over the world. This proved challenging when working with account administration, because requiring the user to come in and provide identification was not a likely option. I had to take a different route with verifying the person was who they really said they were.

 MDaemon runs on a Windows 2000 computer, originally run on an internal web server. This web server offered no scripting options. I had to run a web server on a separate port in order to have any scripting options. MDaemon creators originally offered only little outside scripting support. In December of 2002, the owners of MDaemon sold the product. Since switching owners, MDaemon has made some changes were made to the software and all my pages had to be redone. MDaemon now offered supplemental software to aid programmers. It can now be used with the Microsoft IIS web server. The first version of this software was written in VBScript. Some of the software offered with the new version of the MDaemon included command line utilities to perform tasks such as account creation and manipulation.

System Goals and Preparation:

This project was nowhere near as straightforward as the Testscore System. When I was assigned this server, I was instructed to just set it up and hand it over. I did that and the department asked for “just one small feature”. The “one small feature” kept being expanded. I did not have my organization mapped out as I had before on the Testscore System. I would build one feature and present it, and was asked to write another. For me it was difficult to create a larger project without a blueprint to follow.

Once I could use IIS to work with MDaemon, I installed PHP. I chose this language because I was working with a database, and I am most familiar with PHP and database connections.

How it works:

Before I explain the problems and PHP features I found building this system I will present a rundown of what the add-on system offers:

1. Account Request Function

2. Server Side Error Checking using Regular Expressions

3. Account Batch Creation with Error Checking

4. Account Password Reset Function

5. Use of System Semaphore Files

6. Use of the PHP function var_dump to generate error reports

The account request function is a script that I wrote to collect information in a web form needed by the alumni department. It is used to verify that the person requesting the account is a valid NMU student/graduate. I would store this information in a database. I would have liked to link this up to the current alumni database of graduates to automatically verify requests as being legitimate NMU alumni. However but that database is in the process of being converted over to the new Banner system. The alumni department is currently having to manually look up each account request in my database and comparing it with their own.

Script Optimization:

With this form script, I verify that the user name is not already taken and I perform server side input validation. I had originally written this script to use client side input validation with JavaScript, but I ran into problems with using AOL and the internal proxy server of its built in browser. I chose to use server side over client side validation, because users could turn off Javascript and bypass the validation.

One of my major problems was testing my regular expressions. Regular expressions are powerful pattern-matching functions used with many languages including PHP. In this case regular expressions were used to filter out special characters and to verify that only specific characters were in the string. Special characters include characters such as ~`'”()*&^% or $. I could think of no better way, other than to bombard the server with various requests, to see if they break the rules. I spent at least a week getting the bugs out of my regular expressions. I also used the preg_match command. According to the PHP user comments in the online manual, using preg_match runs faster than PHPs ereg function. Even though my syntax seemed identical between the two commands, I had far less bugs when using preg_match as well.

Here are two example of the regular expressions I used:

To validate a username: (only allow alpha characters and a .)

preg_match('/[^_a-zA-Z.]/')

To validate a year of graduation: (only allow numbers in the form of 1/2003 or 01/2003)

preg_match('/0-9{1,2})\/([0-9n]{4}/)

One more step is done before this function finishes. I had run into problems with some user's requests literally vanishing into thin air. I could not find errors anywhere in any log files relating to these requests. The users were getting a blank screen, and I could not recreate the problem. I was not the direct contact for the problems, so I couldn't actually talk to the users to get more information. I then discovered the PHP var_dump() function. Var_dump will dump all the variables set in the script to the screen. For a week I put catches in the script that would do a var_dump to a file at various steps in the script. Then I compared all the files to track down where the problem was coming from. It turned out that the database connection was failing on the insert statement. My guess is that the users were hitting the back button on their request form to correct a field that the input validation script noted was incorrect. Because of the nature of password fields in forms, they were left blank. The users then submitted the form again and my script hadn't processed all the fields over again (only those that were marked as errors were checked). I quickly corrected it and have not have a problem since. Var_dump is an excellent tool for debugging, since it gives you every variable set in your script. I had to redirect the output of the var_dump with a function called ob_get_contents() and then write that to a file.

Here is an example of how I used var_dump() and redirected the output to a file.

ob_start();

var_dump($GLOBALS);

$output = ob_get_contents();

ob_end_clean();

if($handle = fopen($filename, 'w')){

print “ Can't open file name($filename)”;

exit;

}

if(!fwrite($handle, $output)){

print “Can't write to file ($filename)”;

exit();

}

I also created a batch account creation utility because of the amount of requests the department could receive at one time. A mass email is sent out to graduating seniors at the beginning of their last semester. In one day, as many as 80 accounts have been requested. Having to create each account by hand was not a feasible option. In order to create the function I had to run a command line utility I found. I used the PHP command passthru() to do this. Passthru opens an external shell to run a system command then returns to the script returning the value of the command. This script function works by querying the database for all account requests in the queue. A form with check boxes is presented to the person creating the accounts. They select the accounts they would like to create, and then I use a for loop and passthru to create the accounts. At the end of the script I print out a screen of the status of each account creation. If there was an error returned from passthru, then I printed that out to the screen. Fortunately, the returned value from the MDaemon utility is in plain English so the user can normally figure out what went wrong. The account request is not removed from the queue until the account creation return code is 0.

My code for the passthru() command is similar to the following:

It shortened for readibility

$command = “C:\\MDaemon\\App\MDADDUSER.EXE $user $pass $name

passthru($command, $return_var);

if($return_var == 0){

... database updated, move onto next record

} else {

... print error routine

}

The password reset utility was a bit trickier to write because of the nature of the MDaemon password scheme. The passwords are stored in a text file with the passwords in an encrypted state. In order to modify the password I set up a password hint and answer page. When the user requested their account they filled out a question and answer for this purpose, as well as a contact address in the case that the user is having account problems. If the user types in the correct contact address they are presented with a question they have to answer. If they pass this step the password is reset. The reason I reset the password rather than look it up is for security purposes. This makes sure that if this someone other then the owner of the account does not get the old password. This way when the owner of the account tries to log in and their password (the old one) no longer works they will hopefully contact the alumni office to straighten things out.

The way I went about setting the password is kind of an interesting process. To begin with, I make a copy of the password file and a backup. Then I retrieve the record of the selected user. The format of the password file is all fixed length records with fixed length fields. I would overwrite the old password field with a new temporary password in plain text. The last space in the password field needs to be set to a Y to denote that this record needs the password to be encrypted. I then copy the temp file over to the location of the original password file.

Next, I create a semaphore file in the applications directory to rebuild the password file. Semaphore files are used to force the MDaemon software to run a command on the MDaemon server. For example, if the file userlist.sem is found MDaemon will reload its password file in memory. One glitch that took me a while to figure out was that MDaemon doesn't encrypt the password at this point. It won't encrypt the password until that record is accessed, such as when the users logs in. Another problem I ran into was that the MDaemon documentation counts starting at 1 for all their strings. PHP as well as most programming languages start counting at 0.

One interesting feature I used was the random password I assigned to the account. I have a list of four letter words. I take two four letter words and 2 numbers and create a password. It was my hope that the users would remember these passwords easier than a random one, and that these passwords would be more secure than if the user changed their password. This function is currently not available until the alumni department decides on a strategy to deal with users who don't have questions and answers stored in the database (the password hint and answer has only been in place for six months).

Limiations:

MDaemon does not offer much as far as scripting suggestions or hints. Most of the features I figured out by reading through the user groups on almost a daily basis. All the suggestions are ASP based, and since my coworkers mainly work with PHP I had to convert everything to PHP. I wanted to make a function with authentication but MDaemon has not integrated any system to authenticate with its password file yet. It is on the “wish list” right now.

Looking Back:

If I had to redo this server again I would definitely get a better of idea of all the features the department were expecting. Writing all the different scripts and then trying to merge them together had been a little more difficult than I had hoped. I also learned of a very valuable debugging tool, var_dump. This is especially helpful when dealing with remote users. From my experience, users are genuinely trying to get the best information back to me, but often overlook the important details which could help me fix their problems. With all the information dumped to a file, I see exactly whats going on (like time, browser version, etc.) and can deal with the problem better with this extra information.

The alumni server has been active for almost a year with each of the features being in place for the last six to eight months. The department is happy with my work and has hired me as a contract worker to maintain the server past graduation.

What I have learned:

Working on these two projects gave me two very different lessons on being a systems programmer.

I built the Testscore System with the idea that a very well-trained technical user would be taking it over and having many security functions using CGIs. As frustrated as I was to have to go back and rewrite my code many times over and over, it taught me to be very cautious from the very beginning. I wrote this code with the idea that there were people with too much time on their hands that were going to try to compromise my code.

With the alumni server I wrote this system with the idea that a non-technical person would be taking over the system. I had to pass up some of the security features that I used in the past for more straightforward features. I also had to basically build a manual of all my functions for the department. Dealing with a nontechnical staff with technical issues was a big challenge for me. I think that the ability to work with both the technical and non-technical users will be a big asset when being a systems programmer.

Page 12

