Russell Markwood

CS480 – Senior Project

I have been perusing the art of video games since I first learned how to program. In recent semesters I had been looking at file formats for video games, mostly file formats of previous Quake engines that have been released under the GNU General Public License. At the time that I heard about the senior project in computer science I was looking at the Quake 2 map files (extension bsp). I had written a program to load the geometry of the world, the binary space partition tree, and the portal visibility skeleton. Although I understood how to render this file, I wasn’t entirely sure on how it was created. I never made it far enough in that program to render the radiocity, however when I defined this project I decided to take a look at radiocity too.
Having understood the principals behind the process of creating these worlds, I decided to learn more, and pursue this through my senior project. I was fortunate enough to have previously written code to manage the Windows and DirectX APIs. I only needed to program what is relevant to my project. Also, the Quake community is quite large, and thus I was able to find a freeware editor that creates a file that defines the geometry of the world. This software is called Worldcraft.
My project consists of two programs. The first program is the compiler. It opens the *.map file created by Worldcraft, and compiles it into an optimized file that can be rendered by a viewer that I created. The compiler removes all hidden surfaces, creates a binary space partition tree, a portal visibility skeleton, and calculates radiocity for each face then saves this data to a file. The second program I wrote is the viewer. It loads the data stored in the file generated from the compiler, rebuilds the tree, and renders the tree. The compiler was created with Microsoft Visual Studio and is written in C++ with the use of the Microsoft Foundation Classes. The viewer was also created with Microsoft Visual Studio and is written in C++ with the use of DirectX 7. Worldcraft was created by Valve, LLC.
First I will discus the compiler. The first step is to convert the information from Worldcraft into a format that I can use. Worldcraft saves everything in different types of entities. I am only concerned with one type of entity, the worldspawn. The worldspawn is in essence the shell of the world. It is the only entity that is static, and because it is static, a lot of optimization can be done. Within the worldspawn entity there are lists of convex polyhedra. Each polyhedra is defined by a list of planes, and each plane has a texture and texture information. I need this information in the form of faces, not just planes. In order to get the faces of the polyhedra, I create a face on every plane that extends beyond the maximum boundary of the world. Next I remove all areas of the faces that are in front of any other plane. The faces remaining bound the convex polyhedra. When creating the faces I also save the planes, texture names, and texture information in trees so that I can reduce the set of each to a unique set. The texture information is a u and v axis and offset so that texture coordinates can be generated for a face without saving each coordinate in a file.
After I have the world stored in a manner that I like, it is time to remove all hidden surfaces. These are surfaces that will never be visible from within the world. I found that it was easiest to do this and create the binary space partition tree at the same time. I already have a set of unique planes that divide the map from when I loaded the Worldcraft file. I pick a plane from the current data set, split the faces and planes to the front or back of the plane, and remove this plane from the possible planes to split the two smaller data sets. With this plane I create a node in the tree. I apply this recursively until there are no more planes left to divide with. At that point the faces left in the data sets are convex, and I can save them as a leaf in the tree.
Now that I have the tree created, I need to know how each leaf is connected. With each plane that separates the world, I create a face that spans the maximum boundaries of the world. I then split this plane with the tree so that no face on this plane intersects any face of the world. I now take these new faces, and find their location in the tree. Any face that lies in two leaves is a portal between the two leaves, and also defines the area of space in which the two leaves connect. Any faces that lie in one leaf or occupy the same area as a leaf in the world are not portals, and are thrown away. Leaves and portals are then connected so that each leaf knows the portals connected to it and each portal knows the leaves connected to it.
Now it becomes easy to determine which faces of the world are hidden. I need a point in the world that I know is “inside.” If I were processing more entities than the worldspawn I could do it the way Quake does, and use the info_player_start entity. However, I do not have that luxury, so I defined the origin to always be my “inside” point. I find the leaf that includes the origin, and mark this leaf as inside. Now I follow all portals connected to this leaf to their connected leaves and mark them as inside. I continue until I have followed every possible portal. After this I can throw away all leaves that are not marked as inside, and I am left with only potentially visible faces.

The next step in this project is for each leaf, find the set of leaves that could be visible. I referred to the article “Efficient Algorithms for Computing Conservative Portal Visibility Information” by W.F.H Jimenez, C. Esperanca, and A.A.F. Oliveria. I use the portals between leaves to create an approximated antipenumbra, or viewing volume. To do this, first I need to be able to find an antipenumbra between two portals. To do this I find all spanning planes between the two portals. A spanning plane is a plane that lies on an edge of one portal and a vertex of the other portal, and divides the portals so that neither portal intersects the plane. In the case of more than two portals, I compute the anipenumbra for the first two portals, and clip the third portal within the antipenumbra. Then I create an antipenumbra between the second portal and clipped third portal, and clip the first portal with the most recent antipenumbra. Finally the correct antipenumbra is computed from the clipped first and clipped third portals. This can be applied recursively until one antipenumbra is created for n portals. Now, in order to compute the portal visibility skeleton for every leaf I set its neighbors as visible from within that leaf. Then for every portal in the neighbor I create an antipenumbra with the portal connecting the neighbor and the current leaf. I extend this antipenumbra until it no longer intersects any portals, and every leaf that I visited, I set as visible to the original leaf.
With the portal visibility skeleton done and all potentially visible leaves identified, I can more easily calculate radiocity. In a file external to the map file from Worldcraft, texture names are defined to emit light. Each texture is given a red, green, and blue value along with a power value. This list is loaded and a tree of texture names that emit light is created. Now, for every face, a texture 16x16 pixels is created that represents a patch of light on a face. If the face is of a texture that emits light, then the color of that light is set to the texture, otherwise the texture starts black. Now for every patch of every face that emits light, the amount of light hitting all other patches in the portal visibility skeleton is computed. At the end, each texture will represent the amount of direct light that touches the face the texture is associated with. Next, the average light for each face is computed, and a fraction of that light is applied to all faces within the portal visible skeleton to account for reflected light.
After all of this is computed, everything is indexed, and linked via indices. In the beginning of the file is a number to define the file type, and a list of offsets and sizes of data sections. Vectors are stored first, then texture names, texture axis, faces, nodes, leaves, portal visibility skeleton, and finally light maps.

The Microsoft Foundation Classes were used in making the compiler so that I could easily add progress bars, buttons, and a tree view. The compiler uses two threads. The main thread processes user input and drawing the compiler to the screen. The second thread is created to compile the map. It sends information back to the main thread indicating the current stage of compiling and the progress of that stage. The second thread writes the file, and then terminates.

Now I will discus the viewer. The viewer loads the compiled data, and with the use of the indices rebuilds the tree, without the expensive computation needed to compile the world. All textures are also loaded from the same directory as the map file. When drawing the map, the leaf that the camera lies in is found, and then the portal visibility skeleton is used to render all potentially visible leaves. Textures are multiplied per face by their light maps.

Because I had written a viewer for Quake 2 maps in the past, writing a viewer for my own map files was very straight forward. Having previous experience in multistage texturing also made it very easy to figure out how to implement the light maps. The compiler on the other hand was not as easy to write. Removing the hidden surfaces took me the longest to figure out. In the beginning I tried to use Convex Solid Geometry unions. This method was slow and math intensive. It also left a shell of polygons around the entire world along with the visible polygons. Unsatisfied with this method I looked online for a more efficient way to do this. I found and article by Nathan Whitaker entitled, “Extracting Connectivity Information from a BSP Tree” that brought about the current way that I remove hidden surfaces. When I got to creating the Portal Visibility Skeleton, I did not know of a way to calculate the visible space between two portals known as the antipenumbra. For that, I referred to the article “Efficient Algorithms for Computing Conservative Portal Visibility Information” by W.F.H Jimenez, C. Esperanca, and A.A.F. Oliveria. I did not use the exact method prescribed by them, because they used a graph to quickly find all spanning planes between two portals that I did not feel was well described. Instead, I found a spanning plane for every edge of each portal. Finally, when I got to radiocity, I had already read an article in the book “Advanced 3-D Game Programming Using DirectX 7.0” by Adrian Perez and Dan Royer. With that information, the direct lighting was computed with progressive radiocity.
