Senior Project Paper
Samuel Elfstrom
Nordic Fantasy World Cup
April 26, 2017
[bookmark: _GoBack]	My name is Samuel Elfstrom, my major is Mobile and Web Application Development with a minor in Information Systems. I was unsure what my project was going to be heading into my last two semesters. Knowing I would get the most benefit out of my senior project if the project dealt with my major; a mobile or web application. During the fall semester, I was enrolled in iOS/ iPhone programming, and Advanced Web Programming. Not owning a Mac made it hard to enjoy iPhone programming. I enjoyed working on PHP and MySQL in Advanced Web Programing. As the end of the semester grew closer and closer. I decided my senior project was going to be creating a website. I enjoy Nordic skiing and fantasy football so I wanted to incorporate that into my project. Creating a fantasy Nordic skiing website is one way I could combine all of my interests into my senior project.

Overview:
	The user will start on the login screen. Where the user can login in with a username and password that will direct you to the home page, or they can create a new account. Create an account page has two input fields username and password. Username needs to be a unique name. The passwords need to pass a regular expression test. To pass the test the passwords length must be between eight and sixteen characters long. The password must contain a special character. If the username is already taken or the password does not pass the test the user will stay on the create account page. Otherwise, the user will be granted access to the home page. The home page displays the previous race results for both men and girls, current news from the FIS website; and if the user is a part of a league, it will show the league standings.
The team page shows the user which skiers are on your team. A team consists of five guys and five girls. Then you can click on a button that enables you to edit your team. This gives you the opportunity to remove or add skiers. The league page shows all of the created leagues, this is also, where the user can join a league. If a league is private, an input field will appear next to it. A user can only join a private league if they have the matching password. If the league does not have a password that league is an open league, which any user can join. The page also has a button that can bring you to create a league page. The create a new League has two input fields leagueName, and password the League name must be unique. The user creating a league does not need to set a password. Setting a password makes the league private. If the user leaves the password empty, they are creating a public league that anyone can join. My league page shows the standing of everyone in your league with their point totals. This is where the user will have the ability to leave the league. The skier’s page displays all of the skiers who scored world cup points, their nationality, and how many points they scored. The skiers name is also a link to their FIS page. There is the ability to filter the athletes by nations as well. Edit User is where the user can change their username and or password. This is also, where the user can delete their account.

Technologies:
The primary coding style was python two. I also used template, bottle, MySQL, CSS, and JavaScript. I chose python over PHP because I had a better grasp of PHP, and I wanted to learn more about python. I used templates to use python values in my HTML. My web-framework for python is Bottle. I chose bottle for its ability to support templates, cookies, and convenient access to form data, and plugins for my database. For my database, I used MySQL. Because I was familiar with it from class. I used CSS to design my webpage. JavaScript to set a deadline to edit your team.

Python:
	Clients can easily forge cookies, so I set a secret in my cookies. You need the secret keyword to be able to read or set the cookie. If you try to read a cookie with a secret and the secrets do not match up; the return value will be null. The cookie’s life span lasts until the end of the browsers session. Since I want the cookie to be around longer than the deration of the browsers session I need to alter when the cookie expires. Setting the expires to null, the cookie should not disappear after the browser is closed. I check to make sure the user has their cookie set at the start of every page. If the cookie is not set, the user should be directed to the login page. I use three cookies userName, userLeague, and userTeam. The username stores the users username, userLeague stores the leagueID, and userTeam stores the teamID. I created a method getCookie() that returns an array holding these three values.
	One issue I came across was retracting data from a website. To be able to get the data to support for the athlete page and the race results I needed to learn how to retract data from a webpage. I came across urllib2 and urlopen(). This function returns the content of a webpage as a file-like object. Then I need to read in the data from the URL as a string.
[image:]
Then I can use regular expressions to filter out all of the extra code so I get the information that I wanted. I also use regular expressions for password validation. I use re.match(pattern, password) to see if the password passes the validation test. I use re.findall(pattern, string) to find all of non-overlapping matches. If there is one group per match the return value will be a list of strings. If there is more than one group per match, the return value will be a list of tuples. If the returning value is a tuple, and I still need to modify the values I made a createList method. CreateList creates a temporary list from the first list in the tuple. Then I return the temporary list. If I need to do another regular expression test, I need to make the list into string. This is possible by using the python join method.
	Variable = ‘ ‘.join(regularExpressionList)
The join method combines the list into a string. In the example about, there is a space in the middle of single quotes. This will join all the elements of the list together with a space separating the values. If there is no space, it will combine all the values into a string without a space separating the values. I also need to learn about zip(), I used zip to create a tuple from two or more lists. I use zip when I want to return the ID’s, athlete’s name, and nation from the FIS website. It made it easier to work with one tuple than three lists.
The hardest part working with python and bottle was helper methods. I did not use helper methods at the beginning. Working with bottle I thought every method had to start with and @app.route() followed by def show(db) in order to use the database. It made it for a lot of duplicated code, and large methods. I had a tough time understanding tuples. I was not able to get one value from a tuple for the longest time. At the start of using regular expressions, I did not know when it would return a tuple or a list.

Templates:
	Embedding templates with python was straightforward. Starting a line with %, or if you want one value you need to put the python variable inside of {{variable}}. Templates and python did give me a trouble with trying to print out the values inside of tuples. I found out two way that worked.
[image:]
The example about is the one I used most often. With one assignment (d) to the tuple and going through one list index of the tuple data at a time. To get the value from the list that you want, you need to declare which list you want the value from. This for loop does not follow one of the program organizational principles, modularity. Since the template will only work if you have, the correct lists names. The for loop below follows modularity better since you do not need the list names.
[image:]
	Bottle templates has the ability to allow one template inside of another. This is possible by using include() function. This makes it easy to get the same page design overall. Since the menu bar is the same on every page. I created a template for the menu, and then included the menu template in every page.
	The Hardest part I had with templates was connecting the CSS and JavaScript. I put so many hours to the CSS to show up. I overcomplicated it; I tried everything that I found relevant on the internet. But nothing worked, until I made the links href=”http://euclid.nmu.edu/~selfstro/seniorProject/style.css” in my CSS, and src=”http://euclid.nmu.edu/~selfstro/seniorProject/menu.js” for my JavaScript. That was how I left it until I started to write this paper. Then I set the href back to “/style.css”. I started to follow the error messages. The error happened because it was trying to access style.css like every other webpage it had requested for.
“GET /homePage2 HTTP/1.1” 200
“GET /styles.css HTTP/1.1” 404
The next step I tried was creating a @app.route for style.css with it returning a static file. Then I got only and error message stating I got the arguments wrong. Once I fixed the arguments right for static_file() the CSS showed up on the website.

JavaScript:
I used JavaScript for creating the deadline. Below is how I made the edit team button in the myTeam.tpl disappear.
[image:]
When the currentTime.getDate() matches the day that is the set deadline. JavaScript will hide the button.

Databases:
	How I interacted with my database was by using db.execute(string). The string is the query that I want to be ran in the database. If the query does not return results I would only need that line of code. But if the query returns results I want to use db.fetchall().
 [image:]
Fetchall() returns all the rows from the query as a list of tuples. Alternatively, if the query does not have any results it returns an empty list.
I created seven tables in my database, myGirlSkiers, myGirlResults, myGuySkiers, myGuyResults, myLeague, myTeam, and myUser. The tables MyGirlSkiers and myGuySkiers are the same table but one stores the information of the male skiers, and the other of female skiers.

[image:]
The ID is a unique four to six digit number that FIS gives to every skier. This ID is the same ID for results, and the athlete pages. The athlete field is the athlete’s name. Last name first in all uppercase, then first name first character upper case then the rest lower case. The country fields holds onto the three-character abbreviation of their representing country. Points holds how many World Cup points the athlete has. The athlete is rewarded these points based on their results.
The most recent results will be found in myGirlResults, or myGuyResults. These tables have three fields ID(int), points(int), and place(int). The ID are the same ID’s as in myGirlSkiers, the points are how many world cup points they scored for that race. The place is what place they got in the race.
MyUser is where most of the information about the user is held. usereID(int), userName varchar(32), password varchar(32), team int, points int, league int. The userID, userName, and password are all not null. The userID is the primary key and is auto incremented. The team and league fields are both holding onto the primary keys to their own table. The points hold onto how many points your team has so far this season.
myTeam was created to store the data of who is on each team, holds on to who owns this team and what league they are a part of.
[image:]
The teamID is the primary key that auto increments. The userID should be the same integer as the userID in the myUser table. The leagueID stores the value of the primary key of the myLeague table. M1-w5 all hold the athleteID from my Guy or Girl Skiers table. The mName1-wName5 stores the matching names to the m1-w5 ids. The field type was created when I was trying to create two different types of leagues. However, I ran out of time to get the draft league working.
myLeague table stores the information about a league. It does not hold which users are a part of the league. myLeague contains the fields leagueID int, leagueName varchar(32) not null, password varchar(32). The leagueID is not null, auto increment, and is the primary key.

Update program:
I created a path that will update my database. The path will update the points in myGirl/GuySkiers. It will first erase the myGirl/GuyResults, and then it will create it again, and fill it up with the new results. This is also, where I will add your points from the results table to your user point total.

Reflection:
The hardest part was making the decisions of how I should have started the project. I must have created at least ten different user tables for my database. I always thought about what cool features it should have. I did not start with getting the basics of a fantasy skiing website. Then worked on the features. At the beginning, I wanted to be able to have multiple team, be in multiple leagues, and have two different types of leagues. Therefore, the way I started the project, I made it much harder that it ended up being. With this amount of time, I was not able to get multiple team, multiple leagues, or the drafting league. It was definitely harder than I anticipated. I also did a poor job or creating my grading rubric. I put so much time into parts that I did not have in the grading rubric. These parts were key in making a functional, working the fantasy league. Such as being able to leave leagues, create a team, create a league, and being able to edit your team.

Knowledge Gained, Do Differently:
I learned more about templates. How you can have a template call upon another template within itself. I also learned about tuple in python. How tuples are unchangeable sequences. I also learned how to retrieve data from a website. Then using regular expressions filter that data into the information you are looking for. What I would do differently would be starting smaller, start with the goal much smaller and once I have that then we can go into cool features. I would also use more helper methods.

image5.PNG

image6.PNG

image7.PNG

image1.PNG

image2.PNG

image3.PNG

image4.PNG

