Senior Project Presentation

Steve Jarvis

April 23, 2013

What I Learned...

What’s a Neural Network?

A neural network is a general machine learning tool that can be used to
represent artificial intelligence on a wide variety of data sets. A conventional
artificial neural network learns by making an estimate, getting feedback, and
adjusting the priority given to all its connections (neurons) in such a way that
it inches towards the correct answer.

The simplest neural network is one consisting of two layers. A weight con-
nects each node in the first layer to each node in the second layer. Such a
network could be trained to learn learn logical OR. Imagine three input nodes
and two output, with the bottom left representing false and the bottom right
true. When inputting bits representing logical OR, the network should yield
output representing true (in this case, a positive value in the right output node
and negative in the left output node). See Figure 1 on page 2 for an illustration.
The output will surely be wrong initially, so the error for each output node is
calculated, used to change the corresponding weights, and continues back up
the graph. The next time the network comes across similar input it will give an
estimate slightly closer to the desired answer.

An important consideration for this sample network is its limited learning
ability. A two-layer network can only learn linearly separable functions; equa-
tions whose positive and negative results, when graphed, can be partitioned by
a single line. More complex functions require deeper networks to learn, although
the power increases quickly. With only a single extra layer (and 200 nodes per
layer) the neural net used in this project was able to achieve 93 percent accuracy
on the MNIST Database of Handwritten Digits®.

LFor more information about the MNIST Database see
http://yann.lecun.com/exdb/mnist/

Figure 1: The top layer are inputs, connected by weights to the bottom layer.
The weights are changed during training so that they give the desired output for
the right input. A common implementation is to use activation functions with
a range such that -1 < y < 1, so assuming the network is trained to represent
true with 1 and false with -1, this would be a great output.

Why Is There An Extra Input Node?

The third input node is a bias. The purpose of the bias is to allow any nec-
essary shifting of the activation function. For example, the activation function
for the network used in this project is hyperbolic tangent. It was used because
it has a domain of all real numbers, it is smooth, continuous, and symmetrical,
and the range is -1 to 1. It is also easily derived, which is important in training.
During evaluation, the weights of the neural network are applied as coefficients
in the activation function. As the weights change, the steepness of the graph
is manipulated, but the y-intersect is always 0 (See Figure 2). The bias node
allows shifting of the entire graph, which is the only way to train something
other than a 0 output for a 0 input. For example, without a bias node, the
two layer network would not be able to learn logical NAND, even though the
function is linearly separable.

How Are the Correct Weights Calculated?

Finding the right weights is all the work. The correct weights are found
via a process called back propagation. Back propagation is a repeated process
of error correction, starting with the output nodes and moving back up the
network. The error of the output nodes is simply the difference between the
desired output and the actual output, but the error calculation for each node
higher up the tree must be a summation of all collective errors of the exiting
connections, since each node is connected to every node in the level lower. This
algorithm proved to be the most difficult part of the project and I consulted

T
1.2 + sigl@. S#xd
sigll.a%x)
sigl2.dB%x)

8.6
- a.4
a.2
e
-@.2 - -
-1@ -5 a =] 1@
Input
Figure 2: The graph of a general sigmoidal function as the
coefficients ~ (weights) change. Pic taken from StackOverflow:

http://stackoverflow.com /questions/2480650,/role-of-bias-in-neural-networks

numerous and tutorials and open source projects.?

The network is always training in the background so the user can see poten-
tially constant improvement, and to learn more and different handwriting there
only needs to be more data added for the training instance to reference. Also, the
network takes very long to train. At the time of this presentation, this network
will have been training on euclid for about a month, and that’s not unusual.
Because of the dependency on adjacent layers in back propagated training, par-
allelization is difficult to implement successfully and efficiently®. Parallelized
training would be a great future endeavor but was beyond the scope of this
project.

Earlier it was mentioned that hyperbolic tangent is easily derived and that’s
nice for training. This is because we can use the derivative of the activation
function in calculating the weight deltas. Consider how the derivative changes
as the hyperbolic tangent is traveled. Since the derivative is greatest towards
the middle — where the activation is most uncertain — results in the middle will
cause a greater change in the associated weights. Conversely, as the network’s
weights become more established through training the derivative approaches
zero and stabilizes the network.

i0S, JSON, and CGI.

I wanted a good way to demonstrate the working neural network. Just know-
ing it can recognize handwritten characters in a database is not very exciting,
but having it recognize a user’s in real time would be. So an iOS front end was
created to take input, query the server on which the network is running, and
display the most likely results of which digit was entered. The only particular
I’d like to mention is how surprisingly easy it was to have Apache serve Python
files. A single line file in the pub directory on euclid is all it takes.

File: .htaccess

AddHandler cgi—script .py

Software Design...

How It Works.

Each image of a handwritten digit is divided into 196 logical sections. The
samples from the MNIST database are 28x28 pixel images, so to maintain a

2Here are some of the most helpful resources I found:
http://www.cs.montana.edu/ grayd/backprop.htm
http://arctrix.com/nas/python/bpnn.py

Shttps://research.microsoft.com/apps/pubs/default.aspx?id=173312

Success rates over time with various networks.

0.8

Success Percentage
=3
>

°
S

4— 49, 2 learn, .1 mmnt
=—= 196, .002 learn, .001 mmnt
e—e 16, .00002 learn, .00001 mmnt
=—a 49, .002 learn, .001 mmnt

4— 16, .2 learn, .1 mmnt

M 4#— 196, .2 learn, .1 mmnt
e—e 49,.00002 learn, .00001 mmnt
=—a 16, .002 learn, .001 mmnt

®—e 196, .00002 learn, .00001 mmnt

0.2

00 5000 10000 15000 20000 25000 30000 35000

Training lterations

Figure 3: Example output of the experiment feature of the network training
application. Data like this helped to determine the best network size and proper
coefficients for learning rates. This particular run of the experiment took 9 hours
to complete, running the experiment with the network for 784 section images
takes multiple days to complete. The key displays the network sizes (in neurons
per layer) and coefficients used for learning and momentum rates.

physical square with no extraneous pixels the image had to be represented with
either 4, 16, 49, 196, or 784 sections®*. Based on various runs of the experi-
ment (a special mode of network training) it was decided that 196 yielded the
best balance of complexity and image granularity. See an example of the ex-
periment’s results in Figure 3. In all, the production neural network has 201
inputs, 201 hidden nodes, and 10 outputs. 196 of the inputs are a simple binary
representation of the presence of ink in that section. The additional five inputs
represent the relative distribution of ink in the image — percent of ink north of
the horizon, south of the horizon, west of middle, east of middle, and percent
of total sections containing ink. A section contains ink if even a single pixel in
that section is over a predetermined threshold.

The same algorithms are applied to translating the MNIST data to network
input as translating the iOS application entries to network input. When the
user enters a digit on the iPhone application, the image is used to generate the
binary representation described above and built into a web request to the web
site. The site uses the neural network to interpret the data it receives based on

4These are special sizes that are both perfect squares and evenly divisible by 28.

BestKnown Network
Configuration

Neural Network

JSON response of network
evaluation

Request with binary
representation of image

iPhone
Person

Figure 4: Interaction diagram including each piece of the entire project. Note
that the process of training, which generates the best known weight configura-
tions, is entirely distinct from the user cycle displayed on the left side. The only
link is the sharing of the same weights store.

the best known configuration at the time and outputs a JSON response of the
network’s estimate. The iOS application uses that response to display the most
likely answers and associated certainties. See Figure 4 for an illustration of the
interactions. Also note that the optimal learning and momentum rate vary with
the complexity of the data and size of the network.

How It’s Organized.

In designing this project I aimed to make it modular. Each logical task is
the responsibility of a specific sub-application. The only exception is the exper-
iment, which was used to establish near-optimal coefficients and help explain
unusual behavior at the start of the project. The experiment piggy backs as
a part of the network training application because of the significant overlap in
funcionality. In all, there are five sub-applications involved in the process up
to this point. The live digit recognition requires the iOS application, the web

site, and the neural network package. The training of the network, as well as
the experiment, requires the neural network package and the network training
application.

The project’s parts are all under Git version control. A primary goal of this
project was to build a general purpose, reusable neural network, so the neural
network exists in a dedicated repository ®. The other applications exist as sub-
folders of a repository created specifically for this project. The neural network
repository is referenced as a submodule of this general project repository 6.

Since there is nothing specific to handwriting recognition in the network I
am happy with the decision to store and reference it as an indepenent package.
What could use improvement is the way the network is incorporated with the
rest of the project. There are multiple applications that rely on the neural net-
work package yet it is added as a Git submodule under the network training
application’s directory. It would be more appropriate to have the network sub-
module in a more neutral location and reference it accordingly from the other
applications.

There is also substantial set up to have a completely working demonstration
(web page, network training, adding the neural network package to the Python
Path). It would be nice to package the applications in a way that facilitates a
more automated out-of-the-box solution.

As Hard As I Expected...

I was expecting really hard, and it’s about what I got. There were a couple
especially difficult hurdles I encountered while working on this project. When
I first started trying to train handwritten digit recognition I didn’t get any
performance better than about 15% successful recognition. I trained for days
on even small samples of data and the success rate just stalled. Worse still, it was
unpredictable and inconsistent. I added an extra test that graphed performance
as the network was scaled. I could see that “skinny" three-layer networks —
networks with fewer than about 60 nodes per layer — mastered data sets quickly
and flawlessly. As the networks grew larger they became wildly inconsistent.
The test trained a constant function for a constant number of iterations on
increasingly large networks and graphed the error rate and time to completion
versus size. Figure 5 shows the initial results. There were so many moving pieces
I couldn’t imagine what the issue was. It turns out the answer was local minima,
and that turning the learning and momentum rates down significantly would
help to avoid sticking points. Figure 6 shows the nearly flawless performance of
the improved network.

Sgithub.com/stevejarvis/neural-network
6github.com/stevejarvis/scrawl-recognition

The next great challenge was improving the disappointingly poor performance
of real life digit recognition. The network was training on euclid as I was fin-
ishing the basic functionality of the iOS application, and by the time I finished
the logs read it was correctly recognizing more than 93% of the test data. In
actual use, however, I found the network to correctly interpret only the nicest
of input; perfectly sized and centered submissions. The problem was the strict
preprocessing done on the data in the MNIST Database did not accurately rep-
resent unfiltered data from the real world. To improve performance, I “messied"
up the training data by adding variations on size and rotation. The samples I
added turned the training set of 40k samples into a set of 1.5M samples.

Shortly after adding the new data I learned the three layer network was
unable to learn it, it introduced too much complexity. To overcome this I added
a fourth layer of neurons. Similar to the bump from two to three layers, the
change from three to four meant lower learning rates to avoid the increased
chance of becoming stuck in local minima and longer training times to facilitate
the exponentially increased number of connections.

Now, finally, it seems to be working with acceptable performance. To further
increase the success I believe finding an appropriate bounding box before sending
data from the iOS application would give noticeable improvements.

Here are the approximate line counts’.

Part Line Count Language
Neural Network 542 Python
Network Training 1142 Python
Web Site 67 Python
iOS App 1564 Objective C
Total 3315 All
"Found by we. iOS App is forked from GLPaint by Apple:

https://developer.apple.com/library/ios/#samplecode/GLPaint/

Errors & Time vs Network Size -- Constant Iterations

o e - — ey
— Failures
— Time (seconds)
150
)
El
g
: /
8
. N
£
=
-
2
5
=}
] 100
&
b
o
&
3
c
k3
s
@ 1
50 1
L
|
LT
1 L L | H
/v
50 150 200

100
Network Size (# of input and hidden neurons)

Figure 5: Early scaling test run with bad learning rates. Notice that as the
network grows larger the success of the network becomes as unsure as a coin
flip.

Errors & Time vs Network Size -- Constant Iterations

180 T

— Failures
— Time (seconds) ||

=

(=)

o
T

140 J

= =
= [=1] [=2] o N
(=] o o o o
T T T T T
L L L L L

Errors (on data of size 200) and Time (seconds)

=]
o
T
L

0. e | — S T — r—
40 60 80 100 120 140 160 180 200
Network Size (# of input and hidden neurons)

Figure 6: The scaling test run with a learning rate and momentum rate 1/1000th
of the magnitudes used in Figure 5

10

