

NMU Lost & Found Application
CS480 Senior Project
By
[bookmark: _GoBack]Steven Ludlum

Introduction
For those of you who don’t know me my name is Steven Ludlum and I am a Computer Science major and Math minor. I began my NMU career as a Computer Information Systems major and quickly realized that the lack of programming and technical detail was not the path I had intended for myself. Entering the program I had very little experience in programming (if you even count HTML), but as I’ve gone through the program I feel I have grown a lot and have an immense amount of knowledge compared to when I had first began. Going forward I would like to focus my career towards responsive web application programming.
The objective of my senior project was to create a lost and found responsive web application for our campus. I have worked in the Information Technology department here at NMU for my entire college career and this had been proposed as a project the department thought would be very useful among students, staff, and faculty. The lost and found system was written using Twitter’s Bootstrap responsive design framework, PHP, JavaScript, and XML. All of the data I stored is kept in a MySQL database on the Computer Science department server Euclid.

Overview
	The main purpose of the lost and found system is to allow both NMU and non-NMU users the ability to submit lost and found items on campus to a public log. Making everyone around campus more aware of these items and to help those items get returned to their rightful owners. This system is intended to help Public Safety in tracking and automating processes that they have been doing by hand for a long time.

Features
Accounts
As I said in the overview section this system is for both NMU and non-NMU users. With having a large number of people coming and going through campus I thought making this as accessible to the public as to NMU users would be a nice feature. In the application I have the ability for non-NMU users to create their own account using a personal email address. The setup for this is fairly straightforward. The user can go to the register page and fill out the registration form. All I ask is for is their email, a password, and their first and last names. As of now all communication to the users is done through email. As for the NMU users, they would have the ability to login with their NMU credentials just like they would for EduCat or MyNMU. With having my project hosted on Euclid the department wouldn’t allow me to explicitly tie into the Single Sign On database that is used in production on campus. Instead I have mimicked what I would’ve received from the database as if a NMU user had logged into the system. Below is how I simulated what would’ve been returned by the Single Sign On page and how I add the user to my users table (mysql_match() is a function that returns the number of rows found based on the query).
$_SESSION['loggedIn'] = TRUE;
$_SESSION['user'] = "FakeNMUUser";
$_SESSION['firstName'] = "Test";
$_SESSION['lastName'] = "User";
$query = "select * from Users where Email = '".$_SESSION['user']."'";
if(0 == mysql_match($query)) {
$query = "INSERT INTO Users(FirstName,LastName,Email,Password,Session,Date) values('".$_SESSION['firstName']."','".$_SESSION['lastName']."','".$_SESSION['user']."',NULL,1,NOW());";
$result = mysqli_query($db, $query);
}
The Public Log
	At the homepage you can see the public log. The public log is a running list of every submitted item sorted by the most recent submitted date of when the item was lost or found. Pagination links are found at the bottom, which display the next ten items in the log or search request. Each Item is a link to view the specifics of the item along with a Google Map showing the approximate location of where the item was lost or found.

Posting a Lost or Found Item
	Once a user has logged into the system they are able to submit a lost or found item to the public log. The two buttons at the top of the home page give you the option to submit whether the item was lost or found. The user then needs to fill out the form asking for a title, a description of the item, the date of when the item was lost or found, a category or what type of item it is, and an approximate location based on the buildings on campus. Once successfully completed the user will be sent a confirmation email that the item has been posted to the public log.

Searching
	At the top of the home page is the search area. The public log can be searched by category, by lost or found, by entering something in the search bar, or any combination of the three. Below is one of the queries I use to search my items table comparing what is typed in the search bar to the titles of the items.
$query = "select ID, Title, Lost_Found, Date, Description, LocID, UserID, Category from Item where Title like '%".$_POST['search-elem']."%' order by Date desc limit 10;";

Contact Us
 	Provided in the menu bar is a ”Contact Us” link that sends you to a form that will send an email out relaying any questions you may have. This works for NMU users, non-NMU users, and everyone else. The difference being is if you are logged in as a user you don’t have a “from” field to fill in. As of right now this is the only way to report that you have found someone’s lost item, or claim an item that was found. I was not able to create an administrator account for the system, so for the time being all emails go through me to demonstrate that the functionality is in place.

Confirmation Emails
	When a user has created a non-NMU account or submits an item to the public log a generated email is sent to the user to let them know that they have successfully completed their task. The email is an HTML file that is sent via PHP. At the moment the emails are generic and don’t require any action to be taken by the user.
History
	Each registered user has the ability to look at a list of the items they have submitted to the public log. The “My History” link in the menu bar takes you to a list that resembles the look of the public log but only displays the items you have submitted.

Google Map
	Mentioned earlier in the public log section, when a link to an item is clicked it takes you to the specifics of the item and also displays a Google Map. The map is centered on the building where the item was approximately lost or found. The map offers the default “Map” view and an alternate “Satellite” view along with a zoom in control, a pan control, and a street view control. When clicking the marker a pop-up window shows up displaying the name of the building.

Technologies and Languages Used
Balsamic Mockup Program
	When I first began researching and designing I didn’t have much of an idea of how I should lay things out or how I planned on structuring the project. I began looking at other universities in the state to see how they handled this problem. Surprisingly a majority of the schools just had a FAQ page that told you the steps or procedures on what to do. There were a few other schools that looked like they paid for a product that simply was the public log I developed, but had no way of contacting or showing the detailed information on the lost or found items. I used the Balsamic Mockup Program to help me organize and plan out the beginning stages of the lost and found application. Below are a few of the pages I had mocked up.
[image: Macintosh HD:Users:sludlum:Desktop:Lost and Found:homepage.png][image: Macintosh HD:Users:sludlum:Desktop:Lost and Found:Found Item Reported.png]
[image: Macintosh HD:Users:sludlum:Desktop:Lost and Found:faq.png]

Twitter Bootstrap
	My first thought when designing this application was to not have a device specific application. I wanted the application to be able to span all sizes of devices and to have the same functionality and feel from being on a desktop to a smartphone. So I chose Twitter Bootstrap 3.3.1 (latest version) one of the webs most popular responsive frameworks to handle all of this. Twitter Bootstrap is basically a bunch of premade CSS and JavaScript files that you apply to the classes of your HTML elements. If you can think of an element, Twitter Bootstrap almost certainly has a predefined class implemented and ready to use out of the box.

PHP
	This application was basically written entirely in PHP. I chose PHP because this is the language I was the most familiar with when it came to interacting with the web and calling actions to a database. The majority of my PHP code is used to connect and alter tables in the database using the mysqli_query() function. On successful execution the mysqli_query() function returns a resource when retrieving information from the database. Otherwise it will return true or false when it comes to updating, deleting, or altering a table in some way. Once the resource is returned I run a mysqli_num_rows() function that gives me the number of rows that the query returned. To access the information retrieved from the query I loop through the returned value of mysqli_num_rows() and grab the information by using the mysqli_fetch_row() function. From there the corresponding data can be accessed in an array. An example of this repeated procedure is shown below.
$result = mysqli_query($db,$query);
$numrows = mysqli_num_rows($result);
for($i = 0 ; $i < $numrows; $i++) {
 $row_array = mysqli_fetch_row($result);
 $id = $row_array[0];
 $title = $row_array[1];
 $lost_found = $row_array[2];
 $date = $row_array[3];
 $description = $row_array[4];
 $locationID = $row_array[5];
 $userID = $row_array[6];
 $category = $row_array[7];
 }
Form handling and validation was another big part of the use of PHP. Passing data from page to page was used by setting a forms method to either a “post” or “get” call. The corresponding page would then use either the superglobal $_POST[] or $_GET[] to access the data and from there test on the input to validate whether the data was acceptable or not. In order to set that a user logged in I use the superglobal $_SESSION[] which can then be used on any page as long as you call the session_start() function at the top of the page. When logging out I unset the $_SESSION[] variables by calling the session_unset() function to clear all of the data and then call session_destroy() to delete all of the data associated with the session. An example of this was shown in the Features section under Accounts. To accomplish the task of sending the confirmation emails I used the PHPMailer class. All you have to do is create a PHPMailer object and from there call functions on the object that set things as if you would fill out an email yourself (from, to, subject, cc, body, etc.).

MySQL
	As for my database it consists of four tables that I will describe and explain what their purpose is for the application. I used PHPMyAdmin as my interface to create and administer my tables throughout development as opposed to dealing with everything through the command line. The Users table is used when a new user is created, confirming credentials when a user logs in, or when it is the first time a NMU user logs in with their NMU credentials. The table consists of a unique ID, first and last name, email address (or username if NMU user), a hash of their password, and the date the account was created. The Item table is used to keep track of all the submitted items. It is the main table that is used for the public log as well as showing an items specific details. The table consists of a unique ID, the title, whether the item is lost or found, date of when the item was lost or found, a description, a location ID, a user ID, and what category the item belongs to. The Buildings table was inherited from the university to help display the Google Map and to place markers for the approximate location of where an item was lost or found. The table consists of a unique ID, name, a description, the type of building (dorm, classes, admin, etc.), and the longitude and latitude. The final table is the Session table where I keep track of when users log in and out. The table consists of a unique ID, the users email or NMU username, the date and time they logged in or logged out, a boolean to show their login status, and their IP address.

JavaScript
	I had anticipated using JavaScript a lot more than what I actually did, but instead I did a lot of my form validation using PHP. I pretty much stuck to the Google Maps API v3, which had an endless amount of documentation and examples of different ways to implement the map along with all of the available controls and ways to customize the map to your specifications. For now I had just used the generic map with the default settings to display building locations. Other than the map I used the JavaScript alert box as the way I displayed error messages when filling out forms, or logging in.

XML
	The only purpose XML served in the application was to generate the building location markers for where items were reported. I generate the XML file based on a query to the buildings table for the requested location then build up the XML node and pass that back to my Google Map, which then creates the marker based off of the information in the node. There were a couple of other options to create the marker but because I was doing everything in PHP generating the XML through PHP made the most sense to me.

What I learned
	This project exposed me to a lot of new things I had not previously known as well as being one of my first major projects that I have done on my own (excluding larger homework assignments). I spent a lot of my time on the Google Maps API page, PHPMailer documentation page, the Twitter Bootstrap documentation page, and the Tuts+ (http://code.tutsplus.com/) website which is a vast collection of programming tutorials. Learning the Twitter Bootstrap framework and 12-column grid system was interesting. Once I got the hang of applying the appropriate classes to the HTML elements Bootstrap seemed like it just worked on magic. But there are also plenty of other responsive frameworks that I can apply the 12-column grid knowledge to as well. Even though I said my one strength of this project was PHP I had never worked with the PHPMailer class. It was pretty direct and simple to implement. The PHPMailer download comes with a number of source files, documentation, and examples. I actually only ended up using the class.phpmailer.php file which had all of the essentials to send a basic email. As far as the Google Maps I had a tad bit of prior experience with how it worked but actually implementing a map for myself and using JavaScript explicitly was fun and a lot more code than I expected.

What I Would Do Differently
	There are two main things that stick out to me that I would change if I could do them over again. The first being how I organized the project from the start. Each page is essentially a template page and then I call a require statement that runs a separate page that does all of the functionality of what the page is actually supposed to do, causing a lot of extra unneeded files. The second would be to refactor my code creating more functions, and making the project more object-oriented. For the most part everything is done procedurally and on a needed basis.
Grade
	Below is my grading rubric and the shaded rows are the points I believe I have achieved. My goal was to reach 78 points, which would get me a B. I know there are a few of these things that aren’t technically implemented 100% but the functionality is in place. For instance authenticating the NMU users with their actual credentials and not spoofing the data since the project is hosted on Euclid. Same thing goes for setting up a system email account and how I handle the confirmation emails. Again, the functionality is in place but while developing I’ve only been using my personal email accounts to confirm that these features are working. Totaling my points I have 95, which I would say is a B+.

	Feature
	Points

	Reporting a lost/found item

	15

	Display log of lost/found items on homepage
	
	5

	Search for an item 	

	2

	Sort list of items by date

	2

	Sort list of items by category

	2

	Sort list of items by lost or found

	2

	Authenticate NMU users with NMU credentials

	10

	Ability to create an account for non NMU users

	10

	Creates session when logged in

	2

	Provide logout option

	5

	Confirmation emails sent when creating an account, submitting an item, notifying an item has been found, or when resetting a non NMU password

	10

	Ability to reset passwords for non NMU users

	5

	Display an items specific details/description

	5

	Admin account privileges (editing items, deleting items)

	5

	Keep track of users submitted items

	5

	Ability to contact NMU user if the item submitted is NMU specific (laptop, ID, bike, PEIF pass, etc.)

	10

	Provide small Google map to show general location of where item was reported lost/found

	10

	Reporting tool (graphs, charts) items submitted, items
	10

	Setup system email account and email form for contacting (“contact us”)

	10

	TOTAL
	125

	A
	B
	C
	D
	F

	98
	78
	68
	60
	<60

image3.png

image1.png

image2.png

