
 

 

  

Forager 
Tylor J. Hanshaw 

CS480 

December 1, 2021  
 

Northern Michigan University 
 

Mobile App and Web Design 



  

TYLOR HANSHAW 1 

 

Introduction 
 

Ever since I was a child, I have loved the outdoors. Hiking, biking, and foraging – I have 

always known this and it is one of the reasons I moved to Marquette to attend Northern 

Michigan University. Although I knew all of this already, while I was brainstorming ideas for my 

senior project, I could not think of anything that “popped” at me. That is until one summer day 

while hiking the North Country Trail with my girlfriend, I noticed that she always had a foraging 

book with her to help identify plants near the trail. While she was trying to figure out what kind 

of fern she was looking at an idea popped in my head – an app that helps one keep track of 

plants that they have found. I always forget the location of new or interesting plants that I have 

discovered – such as a small patch of blueberries or maybe Indian Pipes – and this issue only 

increased while living up here. This is how the idea of Forager™ came to be. 

 From the start there were a few obstacles I had to work with – one being my language 

of choice, Kotlin. I had spent some time over the summer of 2021 learning Kotlin and its 

nuances, but by the time I started my project I was not as comfortable with the language as I 

hoped that I would be. Another obstacle was the behemoth that is the Android environment, 

which is almost a language in and of 

itself. At the time, I was taking CS345 

Android Development with Andy 

Poe, so with that course alongside a 

handful of books and the internet I 

pushed on with my nose down. My 

first goal was to create a schema or 

wireframe for my project. With this 

being my first big project, having 

something concrete and on paper helped me visualize what I saw in my mind’s eye more 

clearly. My second goal was to get a foundation laid out code-wise that I could start building 

upon. This foundation was my login and register fragments. The metaphorical ball started 

Figure 1: An early wireframe of the Forager app 



  

TYLOR HANSHAW 2 

 

rolling at this point and one can now see version 1.0 of Forager™, the app that helps one keep 

track of plants and fungi in the wild. 

 

Architecture 
 

The goal of this project was to not only build a foraging app, but to stick to Android 

Development best practices as best as I could. I wanted to try to build this app in a way 

someone or some company would do so in the real world, so from the beginning I chose to 

follow the MVVM (Model, View, View-Model) architecture pattern, along with the repository 

pattern and sticking to a single-activity application. With the MVVM architecture pattern the 

most important concept to keep in mind is the separation of concerns principle - that is keeping 

classes lean and only containing logic pertaining to the given class. This does a few things for 

Android development; it leaves an application less prone to lifecycle-related issues (View-

Model) and adds the benefit of better readability and easier to test single points of your 

application. 

If one looks at the diagram to the 

right (see figure 2), one can see what 

the hierarchy of the MVVM architecture 

model is based around. There are three 

main building blocks in this diagram: The 

View (Activity/Fragment), the View-

Model (ViewModel), and the Model 

(Repository). The View is what the user 

sees – it is the UI of your application – and in my project my View consists of one activity and 

multiple fragments. Next is the ViewModel, whose job it is to store run-time (cached) data and 

manage the lifecycles of the UI controllers. In Forager™ I use only one ViewModel because I am 

only using one activity through my application. One generally wants one ViewModel per 

Figure 2: MVVM Architecture Hierarchy 



  

TYLOR HANSHAW 3 

 

activity, as the ViewModel class is tied to the lifecycle of its corresponding activity. Finally, you 

have the Model or in my applications case the DataRepository singleton. Together, the View, 

ViewModel, and Model classes form a sort of chain of command that all leads to either local or 

remote data.  

Another important 

part of my applications 

architecture is the 

repository pattern that I 

am following. 

Repositories like the DataRepository singleton mainly manage data operations. Acting as a 

bridge between the application and one or more data sources, and adds an abstraction layer 

over my applications data sources and the rest of the app. In Forager™ my repository deals with 

talking to both my local data (MySQL database) and my remote data using Firebase’s Realtime 

Database (NoSQL/JSON tree). In the end my repository only knows one thing, and that is talking 

to and dispersing non-cached data from my data sources to my ViewModel’s. 

The code snippet below is an example of getting data from my remote database in my 

repository. In this example I am using Kotlin coroutines to asynchronously fetch this piece of 

data for the user. On the second line I am creating an instance of the UserResponse data class, 

which has two member variables, exception of type Exception and user of type User (a custom 

data class that holds the user’s information). With the way I structured this suspend function 

only one of the member variables of the UserResponse will be non-null, and I reflect this down 

the chain of command into my View where I check which one of these variables is not null, and 

Figure 3: Another look at the MVVM architecture and how interactions are handled through 
the app 

Figure 4: Kotlin coroutine function within my DataRepository singleton 



  

TYLOR HANSHAW 4 

 

deal with that outcome appropriately. When I call get() on the specific child node associated 

with the user I use the syntax; getValue(User::class.java). What this does is after the data is 

retrieved from that child node the getValue() call will map that data to the data class User, and 

if this fails an exception will be given instead. 

On the other side of things, my ViewModel (HomeViewModel) has a couple of jobs – it 

acts as a steppingstone between the View and the Model. Along these lines, the ViewModel 

also oversees any changes that need to be made to the data after being received from the 

repository or sent over from the View. So, if the user finds a plant that they want to save, the 

data gathered in my View will be passed to my ViewModel and converted to an instance of 

PlantListNode. From here it will be passed onto the Model and then added to the user’s 

personal plant list in the remote database. One more important aspect of the ViewModel is 

that it caches data from the user, this cached data is kept locally until someone else logs in on 

that device or they remove the app. 

Here is another code snippet from my HomeViewModel class, this is the corresponding 

call from the example I gave earlier in my repository. This is a prime example of caching data as 

the user uses the app. Here, the variable observeUserInfo is of type LiveData<UserResponse> 

and the UserResponse data class is that custom class I created from earlier. As stated, 

UserResponse will only hold one non-null member variable at a time. When an instance of 

HomeViewModel is created the code in the liveData(Dispatchers.IO) block will execute creating 

a coroutine on a “thread” designated for IO work. Inside that block the 

emit(DataRepository.getUserInfo()) call is made which assigns the returned value of the 

getUserInfo() call to the observeUserInfo variable.  

 

  
Figure 5: Kotlin coroutine function from HomeViewModel and an example of LiveData being used to cache user information 



  

TYLOR HANSHAW 5 

 

I would like to include one last code snippet, this time from my View – this snippet 

completes the journey of retrieving the user’s data from my Realtime Database. To start, 

homeVM is an instance of HomeViewModel, what I am doing here is observing any changes 

made to the observeUserInfo variable in my ViewModel. This variable is of type LiveData which 

means that when changes are made to it anything inside of the observe({  }) block will be 

executed. I first check to see whether an exception or a user was returned from the coroutine 

call. If no exceptions were thrown, I set up any UI widgets that are tied to the information that 

is being observed. And so, the journey is complete – the user’s data will be retrieved the first 

time an instance of HomeViewModel is created and when that happens my observer in the 

View will execute and set up everything needed for this specific fragment. 

 

Difficulties and Setbacks 
 

 The hardest part of this project was learning how to deal with database calls – more 

specifically, asynchronous calls to my remote database. In hindsight, this seems obvious but 

going into this project I had never thought of or encountered an instance where fetching data 

took longer than expected: For example, retrieving user data from my Realtime Database. 

When I started diving into the database aspect of my project I ran into issues where my UI 

Figure 6: Observing LiveData<UserResponse> to update the UI in my View 



  

TYLOR HANSHAW 6 

 

would load before any data was retrieved from my database, leading to TextViews with “null” 

as their text or my app crashing. I was stopped in my tracks and did not know how to deal with 

this kind of issue. Luckily, I happened to be taking CS444 Parallel and Distributed Processing 

with Andy Poe which dealt with the exact issue I was running in to. Although Andy’s course was 

using C++ the ideas translate to any language, and that is when I dove into callback functions 

and later Kotlin coroutines. I started off using callback functions to solve this issue, but as I kept 

progressing, I realized that more Android developers are moving towards coroutines and away 

from callback functions to tackle asynchronous programming. Although both methods are 

feasible and are sometimes better than the other given certain niche situations, I decided to 

lean more towards Kotlin coroutines as they were what was being used more in the real world. 

And keeping to my vision of building an app with current day best practices in mind I felt it was 

the best move on my end. 

 I also wanted to add that for the first half of the semester I was splitting my time 

between this project and my other two classes unevenly. I ended up spending more time on 

other homework assignments than this one, and because of that I set myself back a good 

amount. Originally, I had planned to use a textbook I purchased to study for the first three 

weeks, so I had a good foundation to build off – but I realized that I was spending more time 

working through the textbook than getting any real work done on my project. So, by midterms I 

was only finished with my login and register fragments, I switched gears thereafter and this is 

when I started to see real progress being made. However, because of that setback I could not 

get everything I wanted done. 

 

Knowledge Gained 
 

 With Forager™ completed I feel like I have learned a lot. I have become more familiar 

with the GoogleMaps API, Firebase Authentication, Firebase’s Realtime Database, 

MySQL/NoSQL and especially the Kotlin language. When I started this project, I knew almost 



  

TYLOR HANSHAW 7 

 

nothing about Kotlin or developing an Android app. Now, looking back I feel like I have gained 

so much more than I expected I would.  

Before starting CS480 I also was not great at managing my time and resources or 

producing a set timeline, for bigger projects and smaller ones. However, sitting here writing this 

I now feel more confident when it comes to managing my time and resources. Sure, I have had 

final projects for classes before this, but this project forced me to really think about what I 

wanted and what steps I needed to take to get there. In the end, this course feels like it is the 

closest one can get to creating an environment that a computer programmer would be in on 

the job, and I cannot express how happy I am looking back on the progress that I have made.  

 

Improvements 
 

 There are a few things I would have liked to do differently with my project, one of the 

biggest ones is using Jetpack Compose for my UI. For most Android apps, the UI is built up of a 

mix of XML, ranging from layouts, menus, drawable’s, and even animations. But Jetpack 

Compose builds its UI entirely programmatically, no XML in sight. A little over halfway through 

the semester is when I discovered Jetpack Compose and I almost made the switch, which would 

have meant throwing all my current layouts out and starting fresh again. However, I decided 

against it. A few other improvements would have to be the UI design, I find it tough sometimes 

to work on the UI because in my eyes it is never good enough. With this mentality it really slows 

down any progress I make, I would create a layout for my login fragment and then end up 

scrapping the entire layout because it would look ‘off’ to me. 

 Lastly, there is one feature that I could not include due to time constraints, and it is 

something I plan to add within the next month or so. I called the feature Groups, and it was a 

way for you to create small groups of friends and share the locations of your plants with them. 

You would be able to see the plants that they have found on your map and toggle them on or 

off depending on your needs. There is a lot more I want to do with the Groups feature, and to 



  

TYLOR HANSHAW 8 

 

my app in general. But in the end, it came down to either polishing my UI and creating my 

documentation page or creating this feature – and I went with the former. 

 

 

 

 

 

 

 

 

 

 

Citations 
  

1. Alcérreca, J. (2018, August 23). ViewModels and LiveData: Patterns + antipatterns. 

Medium. Retrieved December 1, 2021, from 

https://medium.com/androiddevelopers/viewmodels-and-livedata-patterns-

antipatterns-21efaef74a54.  

a. Figure #2. 

2. Google. (n.d.). Guide to App Architecture. Retrieved December 1, 2021 from 

https://developer.android.com/jetpack/guide?gclid=Cj0KCQiA-

qGNBhD3ARIsAO_o7yl1FmfrgOl0o4a5dblnMPH4DQuk8m3tWXXFgK1U49zLbILmMM

l1ETYaAtyUEALw_wcB&gclsrc=aw.ds#overview 

a. Figure #3. 

https://medium.com/androiddevelopers/viewmodels-and-livedata-patterns-antipatterns-21efaef74a54
https://medium.com/androiddevelopers/viewmodels-and-livedata-patterns-antipatterns-21efaef74a54
https://developer.android.com/jetpack/guide?gclid=Cj0KCQiA-qGNBhD3ARIsAO_o7yl1FmfrgOl0o4a5dblnMPH4DQuk8m3tWXXFgK1U49zLbILmMMl1ETYaAtyUEALw_wcB&gclsrc=aw.ds#overview
https://developer.android.com/jetpack/guide?gclid=Cj0KCQiA-qGNBhD3ARIsAO_o7yl1FmfrgOl0o4a5dblnMPH4DQuk8m3tWXXFgK1U49zLbILmMMl1ETYaAtyUEALw_wcB&gclsrc=aw.ds#overview
https://developer.android.com/jetpack/guide?gclid=Cj0KCQiA-qGNBhD3ARIsAO_o7yl1FmfrgOl0o4a5dblnMPH4DQuk8m3tWXXFgK1U49zLbILmMMl1ETYaAtyUEALw_wcB&gclsrc=aw.ds#overview

