Introduction

My senior project for CS480 is called Virtual NMU and involves creating a 3D replica of the first floor of the NSF building here at NMU. I ended up only doing a single hallway of the NSF building due to the limited time I had to work with. The software package that I used is called 3D Game Studio from Conitec. 3D Game Studio uses a model and level editor along with C-scripting to create a fully functional 3D game world. In my proposal, I was to: 1.) Complete a rudimentary Math/CS Dept. that can be traveled through by a player, without going through walls, etc. 2.) Use basic scripting to animate objects in response to the player, for example: lights, doors, etc. 3.) Use advanced scripting, for example, a tour guide.

I had to learn about the WED and MED, which are the level and model editors and the C-scripting, which the game engine uses. I encountered many problems along the way including: software edition and version differences, C-scripting behaviors and game control problems. Using the included tutorials, reference manual and on-line forum helped me overcome my problems. The end result of my project is a downloadable and executable game that can be played on almost any computer or laptop. My progress has

been recorded on my project website since October of 2002.

Steps In Building A Game

Creating a virtual world using Conitec’s 3D Game Studio involves many different elements that come together to make a game. 3D Game Studio contains two main packages: WED and MED. WED is a level editor in which you use a “point and click” interface to create structures, import models, assign actions to entities and so forth. MED is a model editor for creating your own 3D models, which can be imported into WED. Models can be created using a variety of model-creating software including: 3D Studio Max, Milkshape, etc. Once you have created a world with WED, you can import your models and start thinking of what kind of actions they will have. 3D Game Studio comes with some starter action scripts for basic movement like walking. You can add your own scripts and modify Conitec’s template scripts using any text editor; in my case, I used Textpad. After creating a script action, you must use WED to assign the action to the entity. Plug-in dll files can also be created using C++ to allow such things as web browsers to work inside of 3D Game Studio. WED then compiles the game into a level game pack, which can be run as a game. When your game is done, WED can also be used to publish the game where it creates a batch of files that include an exe file. Anyone with a computer or laptop with minimal requirements can run and play the game.

My Experience With Different Game Versions

3D Game Studio offers a free 30-day trial version for download, which offers limited use of their WED level editor and allows you to run the game you created. You cannot publish the game with this version because several features are locked out. This was first version that I used to start learning the package until we received the Instructors Edition. The Instructors Edition unlocked all the features, but still would not allow you to publish the game. This is the version I worked with the most until we received the Commercial Edition towards the end of the semester. The Commercial Edition offers full functionality of the WED editor and allows you to publish your final product. One major problem that I encountered with using Conitec’s products is the lack of giving you the most current version of their software. I started out using the 30-day trial version and after receiving the Instructors version, I updated my software. I found that I had compiling errors and spent many hours trying to figure out what went wrong. It turns out that when you purchase software from Conitec, they don’t send you the most current version; you always need to find the updates. After I updated the Instructors version from the v.5.1 that they sent us to the most current version v.5.24, compiling errors were eliminated and things worked fine. This happened again after updating to the Commercial version, they sent us v.5.1 and again we had to find the update to v.5.24. This was a lesson learned after many hours of troubleshooting.

Assigning An Action To An Entity

You can assign an action to an entity in the WED level editor. An action is simply a function designed especially for a specific entity. An entity can be anything from a stationary cube that acts as a switch to a fully functional character. Actions are created by using the C-script language with a text editor. Here is an example of how actions are written and implemented. The action is used to set parameters and variables, and call another function.

Var npc_switch = 0; //variables are used globally so all entities can use them.

action first_event

{

my.invisible = on; //make the cube switch invisible.

my.enable_impact = on; //will detect impacts.

my.event = event_1; //calls the event_1 function.

}

function event_1()

{

if(you != player)

{

my.enable_impact = off;

npc_switch = 1; //makes entity stop moving

wait(1);

remove(me); //remove the cube so you don't get stuck on it.

tour1.visible = on; //text message display.

waitt(16);

tour1a.visible =on;

waitt(64);

tour1.visible = off;

tour1a.visible =off;

npc_switch = 0; //toggle back to continue walking.

}

if(you == player)

{

my.passable = on; //you, the player, do not want to trigger the switch

waitt(32); //the npc needs to trigger the switch.

my.passable = off;

}

}

As you can see, the action can call a function (in this case, when an impact is detected)

Problems I Encountered

Doors

One of the first problems I encountered was with doors opening and closing. This is one of the first things you can learn in the 3D Game Studio tutorials. The doors open by a scan, simply checking to see how close you are to an object, and rotating the door 90 degrees. The problem was that my door’s rotating axis was in the middle of the door causing it to turn like a “lazy susan”. To solve this problem, I used the MED model editor to move the door model’s center to the left side, where the hinges should be. After I fixed the door model, the door opened fine.

My Dot

Something hard to get used to was the way an entitie’s parameters are referred to as “my.parameter”. If you have a parameter called power, you would think you could just say power = 1;. But since any entity can use the parameter power, it must be referred to as my.power = 1;.

Example:

Var Flag1;

if(Flag1) {...} This would cause an compiling error if used inside of an action for an entity. This is the correct way to use it:

if(my.flag1 == 1) {…} “my” makes it local to the object your talking about.

Infinite Loops, A Must!

As you go through programming classes, you’re always careful not to start an infinite loop in your program. I found that in game programming, infinite loops are very common and used to watch for events.

For Example: Waiting for a user to press a key.

if(key_space == 1) {…} Used inside of a function and NOT in an infinite loop, this would never happen. To fix this, you must insert this into an infinite loop to continuously watch for the key press, like this:

while(1)
{
if(key_t == 1) {call some other functions, then return}

}

The Puddle

During my guide’s tour, I had to set invisible cubes along his path to act as switches which triggered the events along the tour. I first made a cube, set it to invisible so you couldn’t see it, and then made it passable, so he could pass through it. When testing, I found that my tour guide would fall into the floor a bit and I would hear water! Later, I found out that anything you make “passable” in 3D Game Studio is treated like water as far as the engine is concerned. This is why I was hearing the default water sound when the guide would walk into the cube switch.

Example:

action first_event
{

my.invisible = on; makes it invisible

my.passable = on; makes it passable

my.enable_impact = on; detects impact from another object

my.event = event_1; calls an event
}

To fix the problem, I found a trick on the forum in which you call its event and remove the cube upon touching it.

 var npc_switch;
function event_1()
{

npc_switch = 1; changes the state of npc_switch

remove(me); removes the cube, which is referred to as “me”
}
action first_event
{

my.invisible = on;

my.enable_impact = on;

my.event = event_1;
}

I tripped the switch

After fixing the “water” problem I had with the cube switches on the tour path, I encountered another problem. I noticed that if I, the player, touched the switch, that caused it to be removed and the tour guide would never be able to touch it. This was fixed by a simple “if” statement:

if(you = = player)

{

my.passable = on;

waitt(32);

my.passable = off;

}

Briefly being passable enables you to move through it without collision detection.

3D Game Studio World On-line

There is a very active community of game developers that use 3D Game Studio around the world, which makes it easier to find resource material. 3D Game Studio comes with a hand-full of tutorials and a 200-page scripting/designing book (which you must print yourself) that are very helpful in many cases. Conitect has an on-line forum that seems to always have hundreds of users asking and answering questions on game development. I found this very helpful and learned a lot about using the package. Unlike Java3D, there are many more sources of information available on 3D Game Studio and less frustrating evenings when trying to work through a problem.

Conclusion

I started this project knowing nothing about game engines or how games are created. I had to learn about the 3D Game Studio software package, C-script programming language, and how everything fits together to make a game. My end product, so far, is a single hallway of the NSF at NMU. This features opening and closing doors, lights that can be turned on and off, various usages of informative texts on the screen and a tour guide that will take you on a pre-defined tour of the hall that you can follow.

Working on a game is quite involved and time consuming, but, at the same time, fun. I can see that the possibilities are endless and I think 3D Game Studio would be a great choice for a full scale Virtual NMU. Even though my project time is over, I’m planning on continuing construction of my current virtual NMU simulation and will keep in touch with Dr. Horn on my progress.

