Zack Zyble
CS480
Introduction
This program is meant to find how often non-ideal outcome in elections can happen. I’m defining a non-ideal outcome as any outcome were a Condorcet winner exist and the Condorcet winner loses. My program looks at First Past the Poll, Vote for K, Run-Off, Borda Count, Negative Voting, Combs Rule, Approval Voting, and Cumulative Voting.
I decided to do this project primarily to give myself an excuse to learn python since I’ll not have the chance to learn python in a classroom before I graduate. People I’ve worked with have told informed me that a lot companies are currently looking for people who know python and are creating incentives for current employees to learn it.
Definitions
Preference:
A preference is how a voter orders candidates from best to worst. Let each candidate be represented by a letter. A > B > C, A is the favorite, B is second, and C is the least favorite.

Preference Table:
A preference table is a table of various preferences.
A > B > C
A > C > B
B > A > C
B > C > A
C > A > B
C > B > A
Profile:
A profile is a preference table with how many people voted that way
A > B > C | 12
B > C > A | 6
C > A > B | 10
In this example 12 people voted for A > B > C, 6 voted for B > C > A, 10 voted for C > A > B.

Condorcet Winner:
A Condorcet Winner is a candidate that wins in a head to head election against every other candidate in the race.

Single Winner Voter Systems
First Past the Poll (Purality):
First Past the Poll or Plurality Vote is the simplest form of voting. Each voter gets a single vote and voter vote for their favorite candidate. This system has a very clear flaw, if there are more than two candidates,
Here is an example of a Condorcet winner losing
A > B > C > D |30
D > B > C > A |23
C > B > D > A |22
“A” won the Election while “B” (the Condorcet winner) lost.

Vote for K:
Vote for K is similar to First Past the Poll but voters get to vote for K number of candidates. Vote for K is an improvement on the First Past the Poll but it still runs into the same issues that First Past the Poll has, even when voters vote for one less than the total number of candidates. And here is an example of this occurring.
A > B > C | 19
A > C > B | 20
B > A > C | 12
B > C > A | 17
C > A > B | 16
C > B > A | 16
		Vote For 2

	A
	19 + 20 = 39

	B
	12 + 17 = 29

	C
	16 + 16 = 32

“A” won the Vote for 2 in an election with 3 candidates
	Condorcet Winner

	
	Votes Against A
	Votes Against B
	Votes Against C

	Votes For A
	-
	19 + 20 + 16 = 55
	19 + 20 + 12 = 51

	Votes For B
	12 + 17 + 16 = 45
	-
	12 + 17 + 19 = 48

	Votes For C
	16 + 16 + 17 = 49
	16 + 16 + 20 = 52
	-

“C” is the Condorcet winner

Run-Off:
Run-Off voting system is a voting system where the last place in a first past the Poll style vote is removed, then another First Past the Poll vote is done on the new profile and the last place is removed, that is continued until there is only one candidate
Initial Profile with “B” as the Condorcet Winner
A > B > C > D |30
D > B > C > A |23
C > B > D > A |22

After run 1
A > C > D |30
D > C > A |23
C > D > A |22

After run 2
A > D |30
D > A |45
“D” is the winner of the Run-Off

Borda Count:
Borda Count is a voting system where votes rank all of the candidates from favorite to least favorite. The favorite gets one less than number of candidates votes, second favorite gets two less than the number of candidates votes, and so on, until zero. Here is an example of a Condorcet winner losing in a Borda Count.
A > B > C | 17
A > C > B | 15
B > A > C | 19
B > C > A | 10
C > A > B | 19
C > B > A | 20
	Borda Count

	A
	(17*2) + (15*2) + 19 + 19 = 102

	B
	(19*2) + (10*2) + 17 + 20 = 95

	C
	(19*2) + (20*2) + 10 + 15 = 103

“C” won the Borda Count
	Condorcet

	
	Vote Against A
	Vote Against B
	Vote Against C

	Vote For A
	-
	51
	51

	Vote For B
	49
	-
	46

	Vote For C
	49
	54
	-

“A” is the Condorcet Winner
Coomb’s Rule:
Coomb’s Rule voting system is similar to the Run-Off system but if any candidate gets more than 50% of the vote, they are the winner

 Negative Voting:
Negative Voting is similar to First Past the Poll/Plurality but voters vote on the candidate they like the least.
Standard
A > B > C > D |10
Negative Voting
D > C > B > A |10

Approval Voting:
Approval Voting is a voting system in which voters can vote for as many candidates as they like. It is similar to Vote for K except the profile that it uses might look something like this
A > B | 10
C > B > D > A | 15
D | 7
A > D > C > B | 16

Cumulative Voting:
Cumulative Voting is a system where voters get votes equal to number of candidates. If there are 5 candidates, a voter may give all 5 of their votes to a single candidate or parse out there votes to as many candidates they chose. The profile looks similar to approval voting.

GUI and Showing Results
The results are logged in an object that keeps track of every way the Condorcet winner lost and every win each candidate has and how they won. The GUI uses the pythons built in GUI (Tkinter) and it has options for what voting system to run and ways to generate profile to test. The GUI also has options for displaying the results how each candidate won and what voting favors what candidate.

Conclusion
After this project I feel I have a good grasp on python and many of the differences between C++ and python. The hardest part of the project was figuring out algorithms to generate and analyze Approval voting and Cumulative voting. Overall the project was easier than I expected because python is a lot more similar to C++ then I was expecting, and when I came across areas where they were different, python had solutions that that were a lot easier to implement then C++.

Appendix
MA 310 Project
For my project I made a program in C++ that generated a number of profiles and examined them for weirdness to find out how likely it is to come up this a weird result. For this project I determined if a result was weird by comparing it to the Condorcet winner, if one existed. If the Condorcet winner lost, it is a weird result. When a Condorcet winner does not exist, I decided that if every voting method I was testing all agreed on the winner, it was not considered to be a weird result.
I started with the examiner program first. The easiest voting rule is the vote for k, and it can double as a way to find out how many people voted on a profile with the vote for 1. To make it, I used a “for loop” that started from the highest ranked candidate in each preference and looped k backwards and added the votes for each candidate. Here is the code.
/**************************Vote For K******************************/
vector<int> Profile::voteForK(int k) {
	//if k is larger than the preference
	if (k > theProfile.at(0).size()) {
		k = theProfile.at(0).size()-1;
	}
	vector<int> results(canidateList.size(), 0);

	//iterate down each preference
	for (int r = 0; r < Votes.size(); r++) {

		//iterate through the times voted
		for (int v = 0; v < k; v++) {

			//iterate through the candidates
			for (int c = 0; c < canidateList.size(); c++) {
				if (theProfile.at(r).at(v) == canidateList.at(c)) {
					results[c] += Votes.at(r);
				}
			}
		}
	}
	return results;
}
Next, I worked on the Borda Count because it would be similar to the vote for k. For the Borda Count I iterate through every candidate and multiply the amount of votes they got by how many places they finished from the front of the profile minus one. Here is the code.
/**************************Borda Count***************************/
vector<int> Profile::bordaCount() {
	vector<int> results(canidateList.size(), 0);
	//preference
	for (int r = 0; r < Votes.size(); r++) {
		//places from the front
		for (int position = 0; position < theProfile.at(r).size(); position++) {
			//what candidate (saves on if statements)
			for (int c = 0; c < canidateList.size(); c++) {
				if (theProfile.at(r).at(position) == canidateList.at(c)) {
results[c] += (Votes.at(r)*(theProfile.at(r).size()-position));
				}
			}
		}
	}
	return results;
}

[bookmark: _GoBack]After the Borda Count I worked on the run off vote. Because in this voting method the original profile is destroyed and it is also easiest to do this recursively, I had to break the code into multiple methods. The first method copied all relevant info, (which includes the candidates who are still in the race, the how many votes for each preference, and what the current profile looks like) and passed the copies into the second method. The second method is a recursive method where most of the work is done. Once the program has a copy of the profile, the program calls a third method to find out who is in last. It then removes them from everything. It then check if there is only one candidate left. If there is only one, they are the winner. If there are more, then the profile needs to be cleaned up and votes need to be recounted for another pass through the method. Here is the code.
/****************************Method One********************************/
string Profile::runOff() {
	vector<vector<string>> tempProfile;
	vector<string> canidateListV2;
	vector<int> newVote;

	//get a copy of everything, so it can safely destroyed in runoff
	for (int i = 0; i < Votes.size(); i++) {
		tempProfile.push_back(preference);
		for (int j = 0; j < theProfile.at(i).size(); j++) {
			tempProfile.at(i).push_back(theProfile.at(i).at(j));
		}
		newVote.push_back(Votes.at(i));
	}
	for (int i = 0; i < canidateList.size(); i++) {
		canidateListV2.push_back(canidateList.at(i));
	}
	bool instant = false;
	return runOffHelper(tempProfile, canidateListV2, newVote);
}
/***********************************Method Two*****************************/
string Profile::runOffHelper(vector<vector<string>> &oldProfile, vector<string> &canList2, vector<int> &oldVote){

	//find the loser
string theLoser = loser(voteForKInternalUseOnly(oldProfile, canList2, oldVote, 1), canList2);

	//remove the loser from the candidate list
	for (int i = 0; i < canList2.size(); i++) {
		if (theLoser == canList2[i]) {
			canList2.erase(canList2.begin() + i);
			break;
		}
	}

	//if there is only one left return the winner
	if (canList2.size() == 1) {
		return canList2[0];
	}

	//remove loser from profile
	for (int row = 0; row < oldVote.size(); row++) {
		for (int place = 0; place < oldProfile.at(row).size(); place++) {
			//if the loser exist in the row, remove him
			if (oldProfile.at(row).at(place) == theLoser) {
				oldProfile.at(row).erase(oldProfile.at(row).begin() + place);
			}
		}
	}

//if the new preferences was created during the erasing that already exist. Add up all of their votes and erase all except one
	for (int i = 0; i < oldProfile.size(); i++) {
		for (int j = oldProfile.size()-1; j > i; j--) {
			if (oldProfile[i] == oldProfile[j]) {
				oldProfile.erase(oldProfile.begin() + j);
				oldVote[i] += oldVote[j];
				oldVote.erase(oldVote.begin() + j);
			}
		}
	}

	//do this whole thing again
	return runOffHelper(oldProfile, canList2, oldVote);
}
Finally, I moved on to the Condorcet winner. The table I created is bit different from what is in the book. In the book every pairing is on the side and the candidates are across the top with the votes each candidate got begin under them. I made a similar version were every candidate is represent on the side and on the top. If the runner beats there opponent their points are awarded to the right of them, and the person they beat is above. The program uses that table to find a winner. Here is an example of that table.
Profile
10 | A > B > C > D
15 | A > B > D > C
11 | A > C > B > D
13 | A > C > D > B
17 | A > D > B > C
14 | A > D > C > B

						Table
	
	Opponents

	
	
	A
	B
	C
	D
	Total(just for example, not shown in the program)

	Runners
	A
	-
	80
	80
	80
	240

	
	B
	0
	-
	42
	36
	78

	
	C
	0
	38
	-
	34
	62

	
	D
	0
	44
	46
	-
	90

/*******************************Condorcet Method******************************/
string Profile::condorcet() {
	vector<string> ranking;
	vector<vector<int>> theTable;
	vector<int> inTable(canidateList.size(),0);

	//setting up the table
	for (int i = 0; i < canidateList.size(); i++) {
		theTable.push_back(inTable);
	}

	//inside a for loop that goes through every row of the profile			
	for (int profileRow = 0; profileRow < theProfile.size(); profileRow++) {

		//table
		for (int tableRow = 0; tableRow < theTable.size(); tableRow++) {
for (int tableColumn = 0; tableColumn < theTable.at(tableRow).size(); tableColumn++) {
				if (tableRow == tableColumn) {
					continue;//go back to tableColumn for loop
				}

				//in the profile look who finished first in the preference
				int index = -1;
				for (int i = 0; i < theProfile.at(profileRow).size(); i++) {
if (canidateList[tableRow] == theProfile.at(profileRow).at(i)) {
theTable[tableRow][tableColumn] += Votes[profileRow];
						break;
					}
					if (canidateList[tableColumn] == 									theProfile.at(profileRow).at(i)) {
theTable[tableColumn][tableRow] += Votes[profileRow];
						break;
					}
				}
			}
		}
	}

	//find if there is a winner
	vector<bool> undefeated(canidateList.size(), true);
	for (int runner = 0; runner < canidateList.size(); runner++) {
		for (int oppenet = 0; oppenet < canidateList.size(); oppenet++) {
			if (runner == oppenet) {
				continue;//ignore
			}
			else if (theTable[runner][oppenet] > theTable[oppenet][runner]) {
				//runner wins so opponent is defeated
				undefeated[oppenet] = false;
			}
			else if (theTable[runner][oppenet] < theTable[oppenet][runner]) {
				undefeated[runner] = false;
			}
			else {
				//Tie
				undefeated[runner] = false;
				undefeated[oppenet] = false;
			}
		}
	}
	for (int i = 0; i < undefeated.size(); i++) {
		if (undefeated[i] == true) {
			cout <<"There is a Condorcet winner" << endl;
			return canidateList[i];
		}
	}

	cout << "There is not a Condorcet winner" << endl;
	return "no winner";
}
Now that the examination is done, we can move on to the generation of the profiles. Because how the table is generated ultimately determents the results of the examination, I decided to make two unique ways to generate profiles. The first way uses makes every permutation of the candidates, then it adds a uniform distribution of the number of votes you entered plugged into a random number generator.
/********************Uniform Distribution (per profile) **************************/
//n = number of candidates, m = n!
void uniformDistribution(string** &profile, int n, int const m, int totalVoters) {
	//set all values to 0, they were null before
	for (int i = 0; i < m; i++) {
		profile[i][n] = "0";
	}
	int seed = chrono::system_clock::now().time_since_epoch().count();
	default_random_engine generator(seed);
	uniform_int_distribution<int> uniform(1, m);

	for (int i = 0; i < totalVoters; i++) {
		int sendAVoteToo = uniform(generator) - 1;
		int convert;
		convert = stoi(profile[sendAVoteToo][n]);
		convert++;
		profile[sendAVoteToo][n] = to_string(convert);
	}
}

For the second way to generate profiles is heavily based of the program here http://en.cppreference.com/w/cpp/numeric/random/piecewise_constant_distribution . But in order to use that way of generation, it needs a lot of data. So the program I made uses a table the user enters and takes the data from it, and uses a weighted random number generator to generate votes for each preference that are reminiscent of the preference given, but not the same.
/********************* Discrete Distribution **************************/
//this program heavily derives from the link below
//http://en.cppreference.com/w/cpp/numeric/random/piecewise_constant_distribution

#include <fstream>
#include <iostream>
#include <string>
#include <random>
#include <sstream>

using namespace std;

int main(int argc, const char** argv) {
	int numberOfWeights;
	int numberOfVoters;
	int numberOfCanidates;
	int numberOfProfiles;
	vector<int> weights;
	vector<vector<string>> profile;
	string fileName;

	// Setup the random bits
	random_device rd;
	mt19937 gen(rd());

	// Setup
	cout << "How many candidates?" << endl;
	cin >> numberOfCanidates;
	vector<string> canNames(numberOfCanidates, "STOP. Something went very wrong!");
	cout << "How many preferences are you entering?" << endl;
	cin >> numberOfWeights;
	cout << "How many voters?" << endl;
	cin >> numberOfVoters;
	cout << "How many profiles?" << endl;
	cin >> numberOfProfiles;

	//get the preferences
	string line;
	for (int i = 0; i < numberOfWeights; ++i) {
cout << "Please enter the preference. i.e. canidate1 canidate2 canidates3" << endl;
		cin.ignore();
		getline(cin, line);

		istringstream split(line);
		for (int j = 0; j < canNames.size(); j++) {
			split >> canNames[j];
		}
		profile.push_back(canNames);

		cout << "About how many votes for that preference?" << endl;
		int theWeight = 0;
		cin >> theWeight;
		weights.push_back(theWeight);
		cout << endl;
	}

	//for every profile
	ofstream outFile;
	outFile.open("GeneratedProfileTableByHand.txt");
	for (int profileNumber = 0; profileNumber < numberOfProfiles; profileNumber++) {

		//Create the distribution with those weights
		discrete_distribution<> d(weights.begin(), weights.end());
		vector<int> votes(numberOfWeights, 0);

		// use the distribution.
		for (int n = 0; n < numberOfVoters; ++n) {
			++votes[d(gen)];
		}

		//print
		outFile << "#" << profileNumber << endl;
		for (int i = 0; i < profile.size(); i++) {
			for (int j = 0; j < profile[i].size(); j++) {
				if (j != profile[i].size() - 1) {
					outFile << profile[i][j] << " > ";
				}
				else {
					outFile << profile[i][j] << " | ";
				}
			}
			outFile << votes[i] << endl;
		}
		outFile << endl;
	}
	return 0;
}

