NMU Math \& CS Department

Problem of the Month, February 2024

Let $\mathbb{Q}_{>0}$ denote the set of strictly positive rational numbers. That is, $\mathbb{Q}_{>0}$ is the set of all positive numbers $r>0$ that may be expressed as a ratio of two positive whole numbers, $r=\frac{a}{b}$. For example, numbers such as $\frac{3}{2}, \frac{11}{17}, 3=\frac{3}{1}$ belong to the set $\mathbb{Q}_{>0}$. Whereas, numbers such as $-\frac{1}{2},-3, \sqrt{2}$, and π do not belong to the set $\mathbb{Q}_{>0}$, since $-\frac{1}{2}$ and -3 are negative rationals, and numbers such as $\sqrt{2}$ and π are irrational, i.e. they cannot be expressed as a ratio of two whole numbers.

Prove that the entire set $\mathbb{Q}_{>0}$ may be listed (in some order) as an infinite sequence $\left(r_{n}\right)$:

$$
\left(r_{1}, r_{2}, r_{3}, r_{4}, \ldots\right)
$$

with the property that $\lim _{n \rightarrow \infty}\left(r_{n}\right)^{1 / n}=1$.

