NMU Math \& CS Department Problem of the Month

October 2023

Consider the sequence $\left(a_{n}\right)$ with initial conditions $a_{1}=1, a_{2}=2$, and recursion given by:

$$
a_{n}=4 a_{n-1}-3 a_{n-2} \quad n \geq 3 .
$$

The first few terms of the sequence are $1,2,5,14,41,122, \ldots$.
Let $f(n)=a_{1}+a_{2}+\cdots+a_{n}$ be the function that computes the sum of the first n terms of the sequence $\left(a_{n}\right)$. For example: $f(1)=a_{1}=1, f(2)=a_{1}+a_{2}=3$, $f(3)=a_{1}+a_{2}+a_{3}=8$.

Find a closed formula for $f(n)$.
A closed formula for $f(n)$ is an expression that computes the value of $f(n)$ only using the value of n. Something like $f(n)=3 n^{2}-2$ would be considered a closed formula, $\operatorname{but} f(n)=a_{n-1}+n^{2}-3$ would not be considered a closed formula, because it relies on the value of a prior term in the sequence.

