1. Let $n > 0$. Find a formula for $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n$.

\[
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^3 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}
\]

\[
\vdots
\]

\[
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{n(n+1)}{2} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{n(n+1)}{2} \\ 0 & 1 \end{bmatrix}
\]

Answer

\[
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & \frac{n(n+1)}{2} \\ 0 & 1 \end{bmatrix}
\]
2.a. \[RS = p \left[\begin{array}{c} \vdots \end{array} \right] \cdot \left[\begin{array}{c} \vdots \end{array} \right] q = p \left[\begin{array}{c} \vdots \end{array} \right] \] each entry in \(RS \) is found by adding \(q \) numbers together, each being a multiplication of two numbers.

Therefore, \(RS \) requires \(pqr \) multiplications.

2.b. By 2.a. \(RS \) requires \(pqr \) multiplications, and then \((RS)^T \)

requires \(prs \) multiplications.

Therefore \((RS)^T \) requires \(pqr + prs \) multiplications.

2.c. By 2.a. \(ST \) requires \(qrs \) multiplications, and then \(R(ST) \)

requires \(qrs \) multiplications.

Therefore \(R(ST) \) requires \(qrs + qrs \) multiplications.

2.d. \((RS)^T \) requires \(pqr + prs = (23)(14)(11) + (23)(11)(21) \)

\[= 10120 \text{ multiplications.} \]

\(R(ST) \) requires \(qrs + qrs = (19)(11)(23) + (23)(19)(21) \)

\[= 102,566 \text{ multiplications.} \]

\((RS)^T \) requires fewer.
\[A'' = \begin{bmatrix} -2 & 3 & 9 \\ -1 & -10 & 2 \\ -5 & 7 & 21 \end{bmatrix} \]

3.b. Using \(A'' \) from 3.a, we have:
\[\lambda = -2x' + 8y' - 5z' \]
\[\gamma = 3x' - 11y' + 7z' \]
\[z = 9x' - 34y' + 21z' \]

4. \(A \sim \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

\[E_{R_1 + R_2} E_{R_3 - R_2} E_{R_3 + R_2} A = I \]

\[A'' = E_{R_1 + R_2} E_{R_3 - R_2} E_{R_3 + R_2} \]

\[A = (E_{R_1 + R_2})^{-1} (E_{R_3 - R_2})^{-1} (E_{R_3 + R_2})^{-1} \]

\[A = E_{R_1 + R_2} E_{R_3 - R_2} E_{R_3 + R_2} \]

\[A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \]

(There are many answers depending on the operation that you use.)
5. Let C be the matrix B^tA^t.

Notice that $C(AB) = B^tA^tAB = B^t(A^tA)B = B^tIB = B^tB = I$.

Therefore B^tA^t is the inverse matrix of AB.

\[\therefore (AB)^{-1} = B^tA^t. \]

6. Let C be the matrix $(A^t)^t$.

Notice that $C = A^t(A^t)^tA^t = (AA^t)^t = I^t = I$.

\[\text{using the property} \quad (AB)^t = B^tA^t \]

\[\text{the identity matrix is self-transpose.} \]

Therefore $(A^t)^t$ is the inverse matrix of A^t.

\[\therefore (A^t)^{-1} = (A^t)^t. \]

In question 3a, we have $\begin{bmatrix} 3 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2 \end{bmatrix}^{-1} = \begin{bmatrix} -2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -14 & 1 \end{bmatrix}$.

By our work in question 6, we have $\begin{bmatrix} 7 & 0 & -3 \\ 2 & 3 & 4 \\ 1 & -1 & 2 \end{bmatrix}^t = \begin{bmatrix} -2 & 3 & 9 \\ 8 & -1 & -34 \end{bmatrix}$.
7.

\[A^t A = I \]

\[\rightarrow \text{taking the determinant of this equation yields} \]

\[\det(A^t A) = 1 \]

\[\det(A^t) \det(A) = 1 \quad \text{(using the property } \det(AB) = \det(A) \det(B)) \]

\[\det(A^t) = k = 1 \]

\[\det(A^t) = \frac{1}{k} \]

8. \(\Rightarrow \) Show that \(\det(A) = \det(B) \Rightarrow \text{implies that } \det(AB^t) = 1 \)

\[\text{Suppose that } \det(A) = \det(B). \]

\[\text{Then we have, } \det(A) \cdot \frac{1}{\det(B)} = 1 \]

Then by question 7, \(\det(A) \det(B^t) = 1 \)

Then using the property \(\det(CD) = \det(C) \det(D) \)

we have: \(\det(AB^t) = 1. \)

\(\Leftarrow \) \(\Rightarrow \) Show that \(\det(AB^t) = 1 \) implies that \(\det(A) = \det(B) \)

\[\text{Suppose that } \det(AB^t) = 1. \]

\[\text{Then we have } \det(A) \det(B^t) = 1. \]

By question 7, \(\det(A) \cdot \frac{1}{\det(B)} = 1 \)

Therefore \(\det(A) = \det(B). \)
1. The outcome is the same in either order.

\[A \xrightarrow{\text{row op}} EA \xrightarrow{\text{col. op}} (EA)F \xrightarrow{\text{row op}} E(AF) \]

Thus are equal!

2.a. If \(E = E_{R_i \leftrightarrow R_j} \) then \(E^t = E \), and \(\det(E^t) = \det(E) = -1 \)

If \(E = E_{aR_i} \) then \(E^t = E \), and \(\det(E^t) = \det(E) = a \)

If \(E = E_{R_i + bR_j} \) then \(E^t = E_{R_j + bR_i} \), and \(\det(E^t) = \det(E) = 1 \).

2.b. If \(A \) is not invertible, then neither is \(A^t \), and therefore:

\[\det(A) = \det(A^t) = 0 \]

If \(A \) is invertible, it is a product of elementary matrices: \(A = E_k E_{k-1} \cdots E_2 E_1 \).

\[\det(A^t) = \det(E_1^t E_2^t \cdots E_k^t) = \det(E_1^t) \cdots \det(E_k^t) = \det(E_1) \cdots \det(E_k) \]

\[= \det(A). \]

\((\det(E^t) = \det(E)) \) for each \(E \).
3.a. $(1\ 6\ 5\ 4\ 3\ 2)$ cycle type: (6).

3.b. $(1\ 2)(3)(4\ 5) = (1\ 2)(4\ 5)$ cycle type: $(2,2,1)$

3.c. $(1\ 4\ 2)(3) = (1\ 4\ 2)$ cycle type: $(3,1)$

4.a. $(1\ 6)(1\ 5)(1\ 4)(1\ 3)(1\ 2)$ or $(2\ 1)(2\ 6)(2\ 5)(2\ 4)(2\ 3)$ or...

4.b. $(3\ 5)(3\ 4)(1\ 6)(1\ 2)$

5.a.

5.b.

$(1\ 3\ 5) = (1\ 2)(2\ 3)(3\ 4)(4\ 5)(3\ 4)(1\ 2)$

$(1\ 4)(2\ 5) = (2\ 3)(3\ 4)(4\ 5)(2\ 3)(1\ 2)(2\ 3)(3\ 4)(2\ 3)$
6.a. \[A_p = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \sigma(p) = (-1)^3 = 1 \]

6.b. \[A_p = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \sigma(p) = (-1) \cdot (-1) \cdot (-1) = (-1)^3 = -1 \]

\[(1 2 4 3) = (1 3)(1 4)(1 2) \]

7. Write \(p \in S_n \) as a product of transpositions: \(p = t_{k_1} \cdots t_{k_i} \).

Then \(A_p = A_{t_{k_1}} \cdots A_{t_{k_i}} \).

\[A_p^t = A_{t_{k_i}}^t \cdots A_{t_{k_1}}^t \quad A_p^t = A_{t_{k_i}}^t \cdots A_{t_{k_1}}^t \]

\(A_p^t = A_{t_{k_i}}^t \cdots A_{t_{k_1}}^t \) (since the \(A_{t_i} \) are row-swap elements, their transposes are themselves.)

\[(A_p)^{-1} = A_{t_{k_i}}^{-1} \cdots A_{t_{k_1}}^{-1} \]

\((A_p)^{-1} = A_{t_{k_i}}^{-1} \cdots A_{t_{k_1}}^{-1} \) (since \(A_{t_i}^{-1} = A_{t_i} \) because they are row-swap elements.)

From this we see that \((A_p)^t = (A_p)^{-1} \).
ma 312
ps 3 solutions

1.a. (in pencil)

<table>
<thead>
<tr>
<th></th>
<th>\cdot</th>
<th>x</th>
<th>x^2</th>
<th>y</th>
<th>xy</th>
<th>x^2y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(1 3)</td>
<td>(3 1)</td>
<td>(1 2)</td>
<td>(3 2)</td>
<td>(2 3)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>(1 2 3)</td>
<td>(3 2 1)</td>
<td>(1 2)</td>
<td>(1 3)</td>
<td>(2 3)</td>
</tr>
</tbody>
</table>

1.b. (in red pen)

<table>
<thead>
<tr>
<th></th>
<th>\cdot</th>
<th>x</th>
<th>x^2</th>
<th>y</th>
<th>xy</th>
<th>x^2y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1 3)</td>
<td>(1 2 3)</td>
<td>(3 2 1)</td>
<td>1</td>
<td>(1 2)</td>
<td>(1 3)</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x^2</td>
<td>y</td>
<td>xy</td>
<td>x^2y</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>(3 2 1)</td>
<td>(3 2 1)</td>
<td>1</td>
<td>(1 2 3)</td>
<td>(2 3)</td>
<td>(1 2)</td>
</tr>
</tbody>
</table>

Sample calculation:

$xy(x^2y) = x(xy)x(y) = x(x^2y)y$

$= x^3(yx)y$

$= (1)(x^2y)y$

$= x^2y^2$

$= x^2(1)$

$= x^2$
1. c. Possible answers include:

\[S_3 = \langle a, b \mid a^2 = 1, b^2 = 1, (ab)^3 = 1 \rangle \]

\[S_3 = \langle a, b \mid a^2 = 1, b^2 = 1, ababa = 1 \rangle \]

\[S_3 = \langle a, b \mid a^2 = 1, b^2 = 1, aba = bba \rangle \]

1. d. \(S_3 = \left\{ 1, ab, ba, a, aba, b \right\} \) (list of elements relative to \(a, b \) presentation)

\[
\begin{array}{cccccc}
\hline
 & i & ab & ba & a & aba & b \\
\hline
1 & 1 & ab & ba & a & aba & b \\
ab & ab & ba & 1 & aba & b & a \\
ba & ba & 1 & ab & b & a & aba \\
a & a & b & aba & 1 & ba & ab \\
aba & aba & a & \boxed{b} & ab & 1 & ba \\
b & b & aba & a & ba & ab & 1 \\
\hline
\end{array}
\]

Sample calculation: \(aba(ba) = ab(aba) = ab(bab) = a b^2 a b = a^3 b = b \).
2.a. Think about the composition $e \cdot e'$ in two ways.

on one hand, $e \cdot e' = e'$.

on the other hand, $e \cdot e' = e$.

Therefore $e = e'$.

2.b. $a = a \cdot e = a(geb) = (ag)b = e \cdot b = b$.

Thus shown that $a = b$.

3.a. $H \subseteq G$ is a subgroup.

* $1 \in H$ since $1 = 1^2$ and $1 \in \mathbb{Q}^x$.
* $x, y \in H \Rightarrow xy \in H$, since if $x = r^2$ and $y = s^2$, then $xy = (rs)^2$.
* $x \in H \Rightarrow x^{-1} \in H$, since if $x = r^2$ then $x^{-1} = \frac{1}{x} = \left(\frac{1}{r}\right)^2$.

3.b. $H \subseteq G$ is not a subgroup.

One way to see this is to look at the counterexample:

$\begin{align*}
(123) & \cdot (234) = (12)(34) \\
\text{E} H \text{ since cycle type} & \text{ E} H \text{ since cycle type} \quad \& H \text{ since cycle type} \\
(3,1,1) & \quad (3,1,1) \quad (3,2,1)
\end{align*}$
3. c. \(H \leq G \) is a subgroup.

\[
\begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix}
\in \text{GL}_2(\mathbb{Z}), \text{ since } I \text{ has integer entries and } \det(I) = 1.
\]

\[
A, B \in \text{GL}_n(\mathbb{Z}) \implies AB \in \text{GL}_n(\mathbb{Z}), \text{ since if } A, B \text{ have integer entries and } \det \text{ of } \pm 1, \text{ then } AB \text{ has integer entries and } \det(AB) = \det(A) \det(B) = (\pm 1)(\pm 1) = \pm 1.
\]

\[
A \in \text{GL}_n(\mathbb{Z}) \implies A^{-1} \in \text{GL}_n(\mathbb{Z}), \text{ since if } A \text{ has integer entries and } \det \text{ of } \pm 1, \text{ then } \det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{(\pm 1)} = \pm 1.
\]

To justify that \(A^{-1} \) would have integer entries one could appeal to the adjoint formula for the inverse matrix.

4. a. \[\begin{align*}
765 &= 567 + 198 \\
567 &= (2)(198) + 171 \\
198 &= 171 + 27 \\
171 &= (6)(27) + 9 \\
27 &= (3)(9) + 0
\end{align*}\]

\[\gcd(765, 567) = 9\]
4.6. Since \(\gcd(567, 765) = 9 \), the hour hand can reach 9:00, and that is the smallest hour value it can reach. Overall, therefore, it can reach all hours that are multiples of 9; \((0:00, 9:00, 18:00, 27:00, 36:00, \ldots, 75:00)\).

Multiplying our solution to \(765x + 567y = 9 \) by 3 we obtain:

\[
765(-60) + 567(81) = 27
\]

In other words,

\[
567(81) = 27 + 765(60)
\]
4. \, want \ minimal \, n \, such \, that \, \((a^{567})^n = 1 = (a^{765})^k\)

\[567 \, n = 765 \, k\]

(divide out by \(\gcd(567, 765) = 9\))

\[63 \, n = 85 \, k\]

since 63 and 85 have no common factors, we see that \(n = 85\)

is the minimal solution.

Therefore \(\text{ord} \, (a^{567}) = 85\).

5. \(\text{ord} \, (p) = \text{lcm} \, (l_1, \ldots, l_k)\) if \(p\) has cycle type \((l_1, \ldots, l_k)\).

Therefore the elements of \(S_6\) having order 6 must have cycle type:

\[
\begin{array}{ccc}
\times & (6) & \text{How Many?} \\
& (a \, b \, c \, d \, e \, f) & \\
& \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6} & = 120 \\
\end{array}
\]

120 elements of cycle type (6).

we divided by six because of equality of cyclic rotations:

\[
(1 \, 2 \, 3 \, 4 \, 5 \, 6) = (2 \, 3 \, 4 \, 5 \, 6 \, 1) = (3 \, 4 \, 5 \, 6 \, 1 \, 2) = (4 \, 5 \, 6 \, 1 \, 2 \, 3) = (5 \, 6 \, 1 \, 2 \, 3 \, 4) = (6 \, 1 \, 2 \, 3 \, 4 \, 5)
\]

\[
\begin{array}{ccc}
\times & (3,2) & \text{How Many?} \\
& (a \, b \, c)(d \, e)(f) & \\
& \frac{(6 \cdot 5 \cdot 4)(3 \cdot 2)}{3} \cdot \frac{1}{2} & = 40 \cdot 3 = 120 \\
\end{array}
\]

120 elements of cycle type (3,2).

240 total elements of order 6 in \(S_6\).
Bonus.

\[A_{\Phi} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \]

\[\sigma(\Phi) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n-1}{2} & \text{if } n \text{ is odd} \end{cases} \]

Cycle type of \(\Phi \): \((2, 2, \ldots, 2)\) if \(n \) is even,
\[\frac{n}{2} \]
\((2, 2, \ldots, 2, 1)\) if \(n \) is odd,
\[\frac{n-1}{2} \]

Bonus.

\[
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

Therefore

\[
\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
\]

Using the logic of the 2x2 example above we have:

\[
E_{R_i \leftrightarrow R_j} = E_{-R_i} E_{R_j + R_i} E_{R_i - R_j} E_{R_j + R_i}
\]
The two expressions \(\Phi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \right) \) and \(\Phi \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Phi \begin{bmatrix} e & f \\ g & h \end{bmatrix} \) are equal.

Therefore \(\Phi : \text{GL}_2(\mathbb{Q}) \to G \) is a homomorphism.
1.b. \(v(v(x)) = v\left(\frac{1}{x}\right) = \frac{1}{\left(\frac{1}{x}\right)} = x \). Therefore \(v^2 = I \) (where \(I(x) = x \) is the identity function).

\[\therefore \text{ord}(v) = 2. \]

\[u(u(x)) = u\left(\frac{x-1}{x}\right) = \frac{\left(\frac{x-1}{x}\right) - 1}{\left(\frac{x-1}{x}\right)} = \frac{\frac{x-1 - x}{x}}{\left(\frac{x-1}{x}\right)} = \frac{-1}{x} \cdot \frac{x}{x-1} = \frac{-1}{x-1}. \]

\[u(u(u(x))) = u\left(\frac{-1}{x-1}\right) = \frac{\left(-\frac{1}{x-1}\right) - 1}{\left(-\frac{1}{x-1}\right)} = \frac{-1 - (x-1)}{x-1} \cdot \frac{x-1}{-1} = -\frac{x}{-1} = x. \]

Therefore \(u^3 = I \).

\[\text{ord}(u) = 3. \]

1.c. we need to show that \(uv = u^2 v \).

\[v(u(x)) = v\left(\frac{x-1}{x}\right) = \frac{1}{\left(\frac{x-1}{x}\right)} = \frac{x}{x-1}. \]

\[u(u(v(x))) = u\left(u\left(\frac{1}{x}\right)\right) = u\left(\frac{\left(\frac{1}{x}\right)-1}{\left(\frac{1}{x}\right)}\right) = u\left(1 - x\right) = \frac{(1-x)-1}{1-x} = \frac{-x}{1-x} = \frac{x}{x-1}. \]

Therefore \(uv = u^2 v \).

Therefore \(H \cong \langle u, v \mid u^3 = 1, v^2 = 1, uv = u^2 v \rangle \cong S_3. \)
2.a. Let a^i, a^j be two elements in C_{10}.

Then $f(a^i \cdot a^j) = (a^{i+j})^6 = a^{6i+6j} = a^i \cdot a^j = (a^i)^6 (a^j)^6$

$= f(a^i)f(a^j)$.

Thus f is a homomorphism.

$\ker(f) = \{ 1, a^5 \}$

$\text{im}(f) = \{ 1, a, a^2, a^3, a^4, a^8 \}$

2.b. g is a homomorphism by reasoning in 2a.

since $3 \cdot 7 = 1 \cdot 2 \cdot 10$ we have that $X \to X^3$

is the inverse function.

$$X \xrightarrow{g} X^7 \xrightarrow{(.)^3} X^{21} = X$$

g is an invertible homomorphism $\iff g$ is an isomorphism.

2.c. Let X, Y be elements of C_n.

$$(X \cdot Y)^k = X^k \cdot Y^k$$ shows that the function is a homomorphism.

If $\gcd(k,n) \neq 1$, this function cannot be an isomorphism since it cannot be one-to-one. Suppose $d = \gcd(k,n) \neq 1$.

$$a \xrightarrow{k} a^d \xrightarrow{1} a^d \xrightarrow{a^d} 1$$

$$\text{gcd}(12,18) = 3$$
Now suppose that $\gcd(k,n) = 1$.

By the Euclidean Algorithm, $kX + nY = 1$ has a solution for $X, Y \in \mathbb{Z}$.

Let (X_0, Y_0) be a particular integer solution.

Then $kX_0 = 1 + n(-Y_0)$ shows that the function $X \rightarrow kX_0$

is an inverse of the function $X \rightarrow X^k$:

$$X \rightarrow X^k \rightarrow X^k = X^{1+n(-Y_0)} = X$$

Therefore $X \rightarrow X^k$ is an isomorphism $C_n \rightarrow C_n$ exactly when $\gcd(k,n) = 1$.

2.d. $23, 5, 3, 2, 1, 0$

$23 = 4(5) + 3$
$5 = 3 + 2$ $\iff 3 - 2 = 1$
$3 = 2 + 1$
$2 = 2(1) + 0$

$2(3) - 5 = 1$
$2(23 - 4(5)) - 5 = 1$
$2(23) - 9(5) = 1$
$(-9)(5) = 1 + 23(-2)$

$$X \rightarrow X^5 \rightarrow X^{-45} = X^{1+23(-2)} = X \cdot (X^{23})^{-2} = X$$

The inverse function is $X \rightarrow X^{-9}$ or equivalently, $X \rightarrow X^{14}$.
(a b)(b c) = (a b c)

(a b)(c d) = (a b c)(b c d)

Let \(p \in A_n \). Then \(p = \tau_{2k} \tau_{2k-1} \cdots \tau_3 \tau_2 \tau_1 \) is a product of an even number of transpositions. The permutation is therefore a product of a number of pairs of transpositions \(p = (\tau_{2k} \tau_{2k-1}) \cdots (\tau_2 \tau_1) \).

We know that each pair is either a single 3-cycle or a product of two 3-cycles. Therefore \(p \) is a product of 3-cycles.

Therefore \(A_n = \langle 3\text{-cycles} \rangle \).

\[(1 2 3 4 5) = (1 5)(1 4)(1 3)(1 2) = (5 1)(1 4)(3 1)(1 2) = (5 1 4)(3 1 2).\]
Claim. \(\text{Ker}(\phi) = \{1\} \subseteq S_4 \). (The kernel has the identity of \(S_4 \) only.)

Proof. Let \(p \in \text{Ker}(\phi) \). Consider \(\phi(p) \) mapping \(\{1, 2\} \rightarrow \{1, 2\} \) and \(\{1, 3\} \rightarrow \{1, 3\} \).

(This is because \(\phi(p) \) is the identity permutation of \(S_6 \).)

\(\{1, 2\} \rightarrow \{1, 2\} \) implies that \(p(1) = 1 \) or \(p(1) = 2 \). But \(p(1) = 2 \) would contradict the fact that \(\{1, 3\} \rightarrow \{1, 3\} \). Therefore \(p(1) = 1 \). Similar reasoning shows that \(p(i) = i \) for all \(i = 1, 2, 3, 4 \). \(\square \)

Claim. \(\text{Im}(\phi) \subseteq A_6 \).

Proof. Since \(S_4 \) is generated by simple transpositions, it is enough to show that \(\phi(1 2) \), \(\phi(2 3) \), and \(\phi(3 4) \) are elements of \(S_6 \).

(Why? Let \(p \in S_4 \). Write \(p = t_{k_1} t_{k_2} \ldots t_{k_l} \) as a product of simple transpositions.)

Then \(\phi(p) = \phi(t_{k_1}) \cdot \phi(t_{k_2}) \cdot \ldots \cdot \phi(t_{k_l}) \in A_6 \).

\[
\phi(1 2) = (2 4)(3 5) \in A_6
\]

\[
\phi(2 3) = (1 2)(5 6) \in A_6
\]

\[
\phi(3 4) = (2 3)(4 5) \in A_6
\]
Let \(x = (1 \, 2 \, 3 \, 4) \) and \(y = (1 \, 3) \). Then \(x^4 = 1 \), \(y^2 = 1 \), and \(yx = x^3y \).

Therefore, \(G \cong \langle x, y \mid x^4 = 1, y^2 = 1, yx = x^3y \rangle \).
2. Label the four pairs of opposite vertices of the cube. We obtain a homomorphism:

\[G_c \xrightarrow{\phi} S_4 \]

(Identity)

- \(90^\circ \) rotation:
 \[(a b c d) \] all cycle type (4) obtained this way.

- \(180^\circ \) rotation:
 \[(a b)(c d) \] all cycle type (2,2) obtained this way.

- \(120^\circ \) rotation:
 \[(a b c)(d) \] all cycle type (3,1) obtained this way.

- \(180^\circ \) rotation:
 \[(a b)(c)(d) \] all cycle type (2,1,1) obtained this way.

\(\phi \) is a one-to-one and onto homomorphism, thus an isomorphism.

\[G_c \cong S_4. \]
Label the four pairs of opposite faces

We obtain a homomorphism:

\[G_0 \xrightarrow{\phi} S_4 \]

(Identity)

\[\rightarrow (1)(2)(3)(4) \]

\[\rightarrow (a b c d) \quad \text{all cycle type (4) are obtained this way.} \]

\[\rightarrow (a b)(c d) \quad \text{all cycle type (2,2) are obtained this way.} \]

\[\rightarrow (a b c)(d) \quad \text{all cycle type (3,1) are obtained this way.} \]

\[\rightarrow (ab)(c)(d) \quad \text{all cycle type (2,1,1) are obtained this way.} \]

\(\phi \) is a one-to-one and onto homomorphism, thus an isomorphism.

\[G_0 \cong S_4 \]
4.a. $X = \{ \text{colorings of } \Box \text{ relative to an ordering of the faces} \}$

$G_o \subseteq X$
$G_o = \{ \text{rotational symmetries of the cube} \} \approx S_4$

$$|X/S_4| = \frac{1}{|S_4|} \left(|X^{(1,1,1)}| + 6|X^{(3,1,1)}| + 8|X^{(3,3,1)}| + 3|X^{(3,3,3)}| + 6|X^{(4,1)}| \right)$$

$$= \frac{1}{24} \left(3^6 + 6 \cdot 3^3 + 8 \cdot 3^3 + 3 \cdot 3^4 + 6 \cdot 3^4 \right)$$

$$= 3^4 \left(3^2 + 6 \cdot 3 + 8 + 3^2 + 6 \cdot 3 \right)$$

$$= 3^2 \left(27 + 44 \right)$$

$$= 3 \left(\frac{71}{2} \right)$$

$$= 3 \left(36 \frac{1}{2} \right)$$

$$= 3 \left(19 \right)$$

$$= 57 \text{ ways!}$$

4.b. $X = \{ \text{labellings of } \Box \text{ with } \{1, 2, \ldots , 8\} \}$

$G_o \subseteq X$
$G_o = \{ \text{rotational symmetries of the octahedron} \} \approx S_4$

$$|X/S_4| = \frac{1}{|S_4|} \left(|X^{(1,1,1)}| + 6(0) + 8(0) + 3(0) + 6(0) \right)$$

$$= \frac{|X|}{|S_4|}$$

$$= 8 \cdot 7 \cdot 6 \cdot 5$$

$$= 1680 \text{ distinct octahedral dice.}$$
4.c. Let $X = \{ \text{colorings of } \circ \text{ with } R, O, Y, G, B, V \text{ relative to that ordering} \}$

$G \subset X$

$G = \{ \text{symmetries of the hexagon} \}$

$G \cong \{ 1, (1\ 2\ 3\ 4\ 5\ 6), (6\ 5\ 4\ 3\ 2\ 1), (1\ 3\ 5)(2\ 4\ 6), (5\ 3\ 1)(6\ 4\ 2), \}

$0^\circ \quad 60^\circ \quad -60^\circ \quad 120^\circ \quad -120^\circ$

$(1\ 4)(2\ 5)(3\ 6), \quad (2\ 6)(3\ 5), \quad (1\ 2)(3\ 6)(4\ 5), \quad (1\ 3)(4\ 6), \quad (1\ 4)(2\ 3)(5\ 6), \quad (1\ 5)(2\ 4), \quad (1\ 6)(2\ 5)(3\ 4) \}$

$\ast (G \text{ is isomorphic to a twelve element subgroup of } S_6.)$

$|X/G| = \frac{1}{12} \left(|X^{(1,1,1,1,1,1)}| + 2|X^{(6)}| + 2|X^{(3,3)}| + 4|X^{(2,2,2,2)}| + 3|X^{(2,2,2,1,1,1)}| \right)$

$= \frac{1}{12} \left((6^6) + 2(6^1) + 2(6^3) + 4(6^4) + 3(6^4) \right)$

$= 4291$
1. \(\phi(17) = 17 - 1 = 16 \) (since 17 is prime)

\[
\phi(n) = n \prod_{\text{prime } p | n} \left(1 - \frac{1}{p}\right)
\]

\(\phi(32) = \phi(2^5) = 2^5 \left(1 - \frac{1}{2}\right) = 2^4 = 16 \)

\(\phi(40) = \phi(2^3 \cdot 5) = 2^3 \cdot 5 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 2^3 \cdot 5 \left(\frac{1}{2}\right) \left(\frac{4}{5}\right) = 2^3 \cdot 4 = 40 \)

\(\phi(100) = \phi(2^2 \cdot 5^2) = 2^2 \cdot 5^2 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 2^2 \cdot 5^2 \left(\frac{1}{2}\right) \left(\frac{4}{5}\right) = 2 \cdot 5 \cdot 4 = 40 \)

\[
\phi(17) = 16 \\
\phi(32) = 16 \\
\phi(40) = 16 \\
\phi(100) = 40
\]

2. \(\left(\mathbb{Z}/15\mathbb{Z} \right)^* = \{ 1, 2, 4, 7, 8, 11, 13, 14 \} \)
\[2^1 = 2 \quad 7^1 = 7 \quad 11^1 = 11 \quad 13^1 = 13 \quad 14^1 = 14 \]
\[2^2 = 4 \quad 7^2 = 4 \quad 11^2 = 1 \quad 13^2 = 4 \quad 14^2 = 1 \]
\[2^3 = 8 \quad 7^3 = 13 \quad 13^3 = 7 \]
\[2^4 = 1 \quad 7^4 = 1 \quad 13^4 = 1 \]

(we see that all elements of \((\mathbb{Z}/15\mathbb{Z})^*\) are either order 4, or order 2.)

\[
(\mathbb{Z}/15\mathbb{Z})^* = \langle 2, 11 \mid 2^4 = 1, 11^2 = 1, 2 \cdot 11 = 11 \cdot 2 \rangle = \langle a, b \mid a^4 = 1, b^2 = 1, ab = ba \rangle.
\]

let \(2 = a\)
\(11 = b\)

* you can take the first generator to be any of: 2, 7, 8, 13, since they have \(\text{ord} = 4\).

* you can take the other generator to be any of the elements of order 2 that are not the square of the other generator.

3. Work in \(\mathbb{Z}/100\mathbb{Z}\), we have that \(\phi(100) = 40\) \(\Leftrightarrow 3^{40} = 1\).

\[
127^{54} = 3^{40k + r} = (3^{40})^k 3^r = 3^r. \quad \text{So we need the remainder of } 127^{54} \text{ when divided by } 40.
\]

In \(\mathbb{Z}/40\mathbb{Z}\), we have \(127 = 7\), so \(127^{54} = 7^{54} = (7^6)^9 = 1^9 = 1\). Since \(1 \cdot 7^{16} = 1\) in \(\mathbb{Z}/40\mathbb{Z}\), \(1 = 81 \cdot 9\), \(1 \cdot 9 = 81\). Therefore \(127^{54} = 40k + 9\).

Putting things together:

in \(\mathbb{Z}/100\mathbb{Z}\)

\[
127^{54} = 3^{40k + 9} = (3^{40})^k 3^9 = 1^k 3^9 = 3^9 = (3^4)^2 3 = 81 \cdot 81 \cdot 3 = 61 \cdot 3 = 183 = 83
\]

\[
\frac{81}{81} = 81, 81 = 6561 = 61, \quad \frac{61}{183} = 83
\]

(last two digits: 83)
4. Figures could be something like...

\[\begin{array}{ccc}
\text{D}_6 \text{ symmetry group} & \text{D}_6 \text{ symmetry group} & \text{D}_6 \text{ symmetry group} \\
\end{array} \]

But not something like...

\[\begin{array}{cc}
\text{C}_6 \text{ symmetry group} & \text{D}_3 \text{ symmetry group} \\
\end{array} \]

5. \(\rho = \text{rotation by } 180^\circ \) (note: \(R_1 R_2 = \rho \), \(R_2 R_1 = \rho \))

\[W = \{ 1, R_1, R_2, \rho \} \]

\[W = \langle R_1, R_2 \mid R_1^2 = 1, R_2^2 = 1, R_1 R_2 = R_2 R_1 \rangle \]

\(W \) is isomorphic to the Klein 4-group.
6. Let \(X = \{ \text{colorings of } 1 \to 2 \to 3 \text{ relative to ordering} \} \)

\[|X| = 3^4. \]

\(\forall w \in X \cdot \)

\[|X/w| = \frac{1}{|W|} \sum_{w \in W} |X^0| \]

\[= \frac{1}{4} \left(|X^{1,1,1,1}| + |X^{2,2}| + 2 |X^{2,1,1,1}| \right) \]

\[= \frac{1}{4} \left(3^4 + 3^2 + 2 \cdot 3 \right) \]

\[= \frac{3^2 \cdot 15}{4} \]

\[= 36. \]

36 distinct rhombuses.
Rotational Symmetry

H \rotate[180]{180} \quad S \rotate[180]{180}
I \rotate[180]{180} \quad X \rotate[180]{180}
N \rotate[180]{180} \quad Z \rotate[180]{180}
O \rotate[180]{180}

Reflection Symmetry

A \quad B \quad C \quad D \quad E
H \quad I \quad K \quad M
O \quad T \quad U \quad V
W \quad X \quad Y

Both

H, I, O, X

Smallest symmetry group
G = \{1\}
F, G, J, P, Q, R.

Largest symmetry group
G \cong V \text{ Klein 4-group.}
H, I, O

There are aspects of this question that are "open to debate."
8. \(D_n = \langle p, R \mid p^n = 1, R^2 = 1, Rp = p^{-1} R \rangle \).

Since \(\phi \) is a homomorphism: \(\text{im}(\phi) \subseteq A_n \) precisely when \(\phi(p) \in A_n \) and \(\phi(R) \in A_n \).

\(\phi(p) \in A_n \) requires that the \(n \)-cycle \((1 \ 2 \ 3 \ \ldots \ n)\) be even.

\(\phi(p) \in A_n \iff n \text{ odd} \).

\(\phi(R) \in A_n \) requires that the cycle type \((\underbrace{2,2,\ldots,2}_{\frac{n-1}{2}},1) \) be even.

\(\phi(R) \in A_n \iff \frac{n-1}{2} \text{ even} \).

Putting things together: \(\frac{n-1}{2} = 2k \iff n-1 = 4k \iff n = 4k+1 \).

Bonus. Reflections give rise to transpositions \((a \ b)\).

We see that the composition of two reflections gives a rotation of the tetrahedron.

The composition of three reflections \((3 \ 4)(2 \ 3)(1 \ 2) = (4 \ 3 \ 2 \ 1)\) gives 4-cycles: \((1 \ 2 \ 3 \ 4) \) (which is an interesting "non-geometric" transformation).

Anyway, we see that \(\phi: G \to S_4 \) is an isomorphism.

\[G \cong S_4 \]