Test 1

ma312: Abstract Algebra I
Northern Michigan University
Fall 2019

- no electronic devices

name: __
1. Consider the operator given by:

\[
\begin{bmatrix}
 x \\
 y
\end{bmatrix} \longrightarrow
\begin{bmatrix}
 x - y \\
 x + 2y
\end{bmatrix}.
\]

This operator is left-multiplication by some matrix \(A \); find \(A \). Write \(A^{-1} \) and \(A \) as products of elementary matrices. Find \(\det(A) \) and \(\det(A^{-1}) \).
2. Consider the symmetric group S_5, with the particular permutation $p = (215)(4215)(325)$.

- write p as a product of disjoint cycles
- state the cycle type of p
- write p as a product of **simple** transpositions
- find the permutation matrix A_p
- find $\sigma(p)$, the sign of p
- write p^{-1} as a product of disjoint cycles
3. Write the permutation \(h = (123)(456) \) as a product of transpositions in three distinct ways. \textit{One of those ways must be a product of simple transpositions.} Find \(\sigma(h) \).
4. Write the elementary matrix $E_{-R_1} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ as a product of elementary matrices of the other two types: $E_{R_i+bR_j}$, and $E_{R_i \leftrightarrow R_j}$.

Bonus. Show that the elementary matrix $E_{2R_1} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ cannot be written as a product of elementary matrices of the other two types.
5. Consider the permutation $\Phi \in S_n$ that is defined by $\Phi(k) = n - k + 1$ for all $k = 1, \ldots, n$. In particular, we have:

$\Phi(1) = n$
$\Phi(2) = n - 1$
$\Phi(3) = n - 2$

\[\vdots \]
$\Phi(n - 2) = 3$
$\Phi(n - 1) = 2$
$\Phi(n) = 1.$

Find the cycle type of Φ and the associated permutation matrix A_Φ.

Bonus. Find $\sigma(\Phi)$.