
Chapter 1 A First Java Program
1.1 A first Java program

The following program illustrates some basic components of a Java program. The program draws the
black outline of a rectangle and the word ‘Hi’ written in red.

Hi

import java.awt.*;

public class BoxWithHi extends java.applet.Applet
	
 {

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 g.setColor(Color.black);
	
 	
 g.drawRect(30, 20, 100, 80);
	
 	
 g.setColor(Color.red);
	
 	
 g.drawString("Hi", 75, 65);
	
 	
 }

	
 }

Three type styles are used in the example to indicate the following:
• Items in bold are reserved words whose meaning is fixed by the Java language.
• Items in typewriter are also known to Java. Use exactly as written.
• Items in sans serif are chosen by the programmer (includes all numbers). While the letter g in the

above program need not be a g, it must be the same in all five places that it appears.

Each of the words and symbols serves a purpose, though, in the beginning, we will be just be copying
many of them.

Parts of the program are repeated below with explanations. Explanations may be included in a program.
The part of each line which begins with '//' is a comment (explanation). Comments are not interpreted by
the computer — they are for human readers of the program only.

import java.awt.*;	
 // declares our intent to use a standard set of graphics commands.
public class BoxWithHi extends java.applet.Applet
	
 	
 	
 	
 	
 // names our program “ BoxWithHi” and declares that our program is
	
 	
 	
 	
 	
 // a modification of a pre-existing program “java.applet.Applet”.

	
 { 	
 	
 	
 	
 // braces are used to enclose each named portion of a program.
	
 }	
 	
 	
 	

 page 1–1

public void paint(Graphics g)	
 // Permits “public” access to this part of the program.
	
 	
 	
 	
 	
 	
 // “void” is the return type for this part of the program.
	
 	
 	
 	
 	
 	
 // Until chapter 3, all return types are “void”.
	
 	
 	
 	
 	
 	
 // Names this part of the program “paint”.
 // Declares that “paint” requires a “Graphics” object “g”.
g.setColor(Color.black);	
	
 // These statements provide graphics instructions
g.drawRect(30, 20, 100, 80);	
 // At this point, you should consider modifying only
g.setColor(Color.red);	
 	
 // graphics instructions.
g.drawString("Hi", 75, 65);

Specifics of the graphics commands above
Colors are set first to black (for the rectangle) and then later to red (for the word “Hi”).
Each number counts pixels (dots) on the screen measured from left to right or top to bottom.

Hi
65 down

30
across

20 down

75
across

80 high

100 wide

The rectangle has its left side 30 pixels from the left of the screen; its top is 20 pixels from the top of the
screen. The rectangle is 100 pixels wide and 80 pixels high.

The word “Hi” starts 75 pixels from the left of the screen and 65 pixels from the top of the screen. The
positions of words are measured from the bottom of the letters because this is the traditional way
typographers do it. The measurement is to the bottom of common letters — letters such as ‘y’ extend
lower. Typographers call the position of the bottom of the common letters the baseline.

Important note:
Computers are extremely fussy about how things are spelled and punctuated. The program above has 10
periods, 5 semi-colons and 5 commas. The quotation marks around the word “Hi” are the double quotes
generated by holding down the shift key and pressing the key to the right of the semi-colon key. Get one
symbol wrong and the program will not work. Furthermore, the Java language is “case sensitive”. This
means that the proper use of upper case and lower case letters is critical.

page 1–2 Chapter 1 A First Java Program

Graphics commands
 a. Commands
g.setColor(Color.red);	
 	
 	
 // other colors are listed as constants below
g.setColor(new Color(0, 120, 0));	
 	
 // red, green, blue (0…255 each)
g.setFont(new Font("SansSerif", Font.BOLD, 24));	
// font, style (constants below), size in points.
g.drawString(“Any Text”, 50, 100);	
 	
 // place text in window at over 50, down 100
g.drawLine(30, 20, 120, 100);	
 	
 // xstart, ystart, xend, yend
g.drawRect(30, 20, 100, 80);	
 	
 // left, top, width, height – outlined
g.fillRect(30, 20, 100, 80);	
 	
 // left, top, width, height – solid
g.drawRoundRect(30, 20, 100, 80, 10, 10);	
 // left, top, width, height ,
	
 	
 	
 	
 	
 	
 	
 // arcWidth, arcHeight* – outlined
g.fillRoundRect(30, 20, 100, 80, 10, 10);	
 // left, top, width, height ,
	
 	
 	
 	
 	
 	
 	
 // arcWidth, arcHeight* – solid
g.drawOval(30, 20, 100, 80);	
 	
 // left, top, width, height – outlined
g.fillOval(30, 20, 100, 80);	
 	
 // left, top, width, height – solid
g.drawArc(30, 20, 50, 80, 30, 60);	
 	
 // left, top, width, height ,
 // startAngle, extentAngle
	
 	
 	
 	
 	
 	
 	
 // – outlines part of the oval described by
	
 	
 	
 	
 	
 	
 	
 // – – left, top, width, height
 // – startAngle is measured in degrees
	
 	
 	
 	
 	
 	
 	
 // – – counter clockwise from the right (east)
	
 	
 	
 	
 	
 	
 	
 // – extentAngle is measured in degrees
	
 	
 	
 	
 	
 	
 	
 // – – counter clockwise from the startAngle
g.fillArc(30, 20, 50, 80, 30, 60); // left, top, width, height ,
 // startAngle, extentAngle
	
 	
 	
 	
 	
 	
 	
 // – fills part of the oval (a ‘pie piece’)
Polygon p;	
 	
 	
 	
 // A polygon, any number of sides
p = new Polygon();
p.addPoint(20, 20);	
 	
 	
 // To draw a second polygon
p.addPoint(20, 120);	
 	
 	
 // – repeat all lines except
p.addPoint(120, 120);	
 	
 	
 // – “Polygon p;”
g.drawPolygon(p); or g.fillPolygon(p);
* arcWidth and arcHeight are the horizontal and vertical diameter of an oval; the corners of the round rect

are quarters of the oval.

b. Constants
Color.red, Color.green, Color.blue, Color.yellow, Color.magenta, Color.cyan,
Color.white, Color.black, Color.lightGray, Color.gray, Color.darkGray, Color.pink,
Color.orange

Font.PLAIN, Font.BOLD, Font.ITALIC, Font.BOLD+Font.ITALIC
"SansSerif" (SansSerif), "Serif"(Serif), "MonoSpaced"(MonoSpaced)
Any font on your computer can be used, however the standard fonts on the line above should be
available on all computers.

 Chapter 1 A First Java Program page 1–3

Mixing Colors
Colors are mixed by combining light in each of the primary colors red, green and blue. For each primary
color, the value 0 represents none and the value 255 is the maximum available. Using equal amounts of all
three primaries will make black (0 0 0), or white (255 255 255), or gray.

The rainbow color strip at the right shows 12 colors and
how to mix them. From one color to the next, just one
primary is changed. To make a color between one color
and the next, set the primary that is changed to an in-
between value.

To make dark colors, use about half of the given values. If
one-half is too dark, try two-thirds; not dark enough, try
one-third. Many of the colors shown are quite bright. A
more normal green is 0 170 0, a more normal violet is 130
0 130.

To make pastel colors, change 0s to 205 and 128s to 230
(which is half-way between 205 and 255). To lighten the
pastels, use a larger number than 205 for 0 and use the
value half-way between your larger number and 255 for
128.

 red greenblue
← red 255 0 0
← orange 255 128 0
← yellow 255 255 0
← yellow-green 128 255 0
← green 0 255 0
← green blue-green 0 255 128
← blue-green* 0 255 255
← blue blue-green 0 128 255
← blue 0 0 255
← blue-violet 128 0 255
← violet** 255 0 255
← red-violet 255 0 128
* bright blue-green is also called cyan.
** bright violet is also called magenta.

The colors in the color strip whose names are shown in italics are standard colors listed on page 3. Java
uses cyan and magenta rather than blue-green and violet. The orange supplied by Java has more yellow than
the orange listed above (quite a bit too much yellow in my opinion).
To make brown, use 130 red, 65 green and 0 blue. Use a bit more red for a redder brown.

Exercises — 1.1
1. Run the example above on a computer. Your instructor will give you specifics as to how to do this.

2. Change the example to draw something else. Experiment with the additional graphics commands
given above. The figures given here are intended to stimulate your imagination.

Sally
&
Joe

HiHi

. The frame around ‘Sally & Joe’ in the second example is made by putting a filled white rectangle on
top of a filled dark brown rectangle. The word ‘Hi’ is drawn twice, first in black and then in color, a
little higher and farther left. The smile is a filled arc starting at 180° and then drawn for 180°.

3. Make a smiley face.

4. Experiment with colors using the command: g.setColor(new Color(red, green, blue)). Try
various values for red, green and blue. Use the section on mixing colors above for hints as to what
values to use.

5. Experiment with the graphics commands and constants to become familiar with them.

page 1–4 Chapter 1 A First Java Program

1.2 Organizing a Program with Private Methods

The programs below each produce the same result — a picture similar to the
illustration. In the right hand version the commands that create the three
objects in the picture have been grouped together and named. Named groups
of commands are called methods.

import java.awt.*;

public class Landscape extends
	
 	
 	
 	
 	
 java.applet.Applet
	
 {
	
 public void paint(Graphics g)
	
 	
 {
	
 	
 g.setColor(Color.red);
	
 	
 g.drawOval(200, 30, 60, 60);
	
 	
 g.drawLine(190, 40, 203, 50);
	
 	
 g.drawLine(270, 40, 257, 50);
	
 	
 g.drawLine(190, 80, 203, 70);
	
 	
 g.drawLine(270, 80, 257, 70);
	
 	
 g.drawLine(230, 15, 230, 30);
	
 	
 g.drawLine(230, 105, 230, 90);

	
 	
 g.setColor(Color.darkGray);
	
 	
 g.fillOval(150, 150, 10, 10);
	
 	
 g.fillOval(160, 160, 70, 20);
	
 	
 g.drawLine(160, 160, 160, 170);
	
 	
 g.drawLine(170, 177, 160, 188);
	
 	
 g.drawLine(170, 177, 180, 188);
	
 	
 g.drawLine(220, 177, 210, 188);
	
 	
 g.drawLine(220, 177, 230, 188);

	
 	
 Polygon triangle;
	
 	
 triangle = new Polygon();
	
 	
 triangle.addPoint(70, 90);
	
 	
 triangle.addPoint(50, 170);
	
 	
 triangle.addPoint(90, 170);
	
 	
 g.setColor(Color.green);
	
 	
 g.fillPolygon(triangle);
	
 	
 g.setColor(Color.black);
	
 	
 g.drawPolygon(triangle);
	
 	
 g.drawLine(70, 170, 70, 190);
	
 	
 }
	
 }

import java.awt.*;

public class Landscape extends
	
 	
 	
 	
 	
 java.applet.Applet
	
 {
	
 public void paint(Graphics g)
	
 	
 {
	
 	
 paintSun(g);
	
 	
 paintBeast(g);
	
 	
 paintTree(g);
	
 	
 }

	
 private void paintSun(Graphics g)
	
 	
 {
	
 	
 g.setColor(Color.red);
	
 	
 g.drawOval(200, 30, 60, 60);
	
 	
 g.drawLine(190, 40, 203, 50);
	
 	
 g.drawLine(270, 40, 257, 50);
	
 	
 g.drawLine(190, 80, 203, 70);
	
 	
 g.drawLine(270, 80, 257, 70);
	
 	
 g.drawLine(230, 15, 230, 30);
	
 	
 g.drawLine(230, 105, 230, 90);
	
 	
 }

	
 private void paintBeast(Graphics g)
	
 	
 {
	
 	
 g.setColor(Color.darkGray);
	
 	
 g.fillOval(150, 150, 10, 10);
	
 	
 g.fillOval(160, 160, 70, 20);
	
 	
 g.drawLine(160, 160, 160, 170);
	
 	
 g.drawLine(170, 177, 160, 188);
	
 	
 g.drawLine(170, 177, 180, 188);
	
 	
 g.drawLine(220, 177, 210, 188);
	
 	
 g.drawLine(220, 177, 230, 188);
	
 	
 }

	
 private void paintTree(Graphics g)
	
 	
 {
	
 	
 Polygon triangle;
	
 	
 triangle = new Polygon();
	
 	
 triangle.addPoint(70, 90);
	
 	
 triangle.addPoint(50, 170);
	
 	
 triangle.addPoint(90, 170);
	
 	
 g.setColor(Color.green);
	
 	
 g.fillPolygon(triangle);
	
 	
 g.setColor(Color.black);
	
 	
 g.drawPolygon(triangle);
	
 	
 g.drawLine(70, 170, 70, 190);
	
 	
 }
	
 }

The program on the right is somewhat longer but it has the advantage of better organization. On the left,
the paint method has 28 lines; on the right, the paint method has 3 lines with helpful names. The parts of
the program and their purposes stand out clearly in the second program. Also, shorter methods tend to
make editing a program easier.

 Chapter 1 A First Java Program page 1–5

Method names
Methods are customarily given names which start with a lower case letter. In the interest of program
readability, you should follow this custom. The design of the Java language makes it impossible for the
names of methods to contain spaces. Multiword method names are made more readable by capitalizing
the first letter of each word after the first. While these capitalization rules are not enforced by the
computer, you should follow them as though they were.

The names paintSun, paintBeast and paintTree differ from the name paint in that paint was a name already
known to Java whereas the others were created for this particular program. Pre-existing Java instructions
use the method paint to create the picture on the screen. No pre-existing Java instructions would use the
methods paintSun, paintBeast and paintTree. To make absolutely sure that no pre-existing instructions
would unexpectedly use the newly named methods, we have declared them to be private. Private ensures
a method will only be available to methods within the class containing the private method.

In the paint method, the new methods are used as commands.

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 paintSun(g);
	
 	
 paintBeast(g);
	
 	
 paintTree(g);
	
 	
 }

The statement paintSun(g); commands the method paintSun, to paint the sun. The parentheses contain the
names of any required objects a method will use. paintSun requires a graphics object, and the graphics
object g is placed in the parentheses.

Exercises — 1.2
Write several programs that lend themselves to the use of private methods for breaking up the paint
method. Your programs should use 3 or 4 private methods. Rewrite the programs from exercises 1.1 using
private methods.

page 1–6 Chapter 1 A First Java Program

1.3 The Console Window
Often there is a need to report information during the execution of a program. The console window
provides a simple method to accomplish this. For example, if we wanted the program which draws the
sun, beast, and tree to report when it was starting to draw each of the items, we might put 3 additional
lines into the program:

import java.awt.*;

public class Landscape extends java.applet.Applet
	
 {

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 paintSun(g);
	
 	
 paintBeast(g);
	
 	
 paintTree(g);
	
 	
 }

	
 private void paintSun(Graphics g)
	
 	
 {
	
 	
 System.out.println("Painting sun.");	
 // added line
	
 	
 g.setColor(Color.red);
	
 	
 ...	
	
 	
 	
 // in this case, ellipses (…) mean “and so on as before.”
	
 	
 }

	
 private void paintBeast(Graphics g)
	
 	
 {
	
 	
 System.out.println("Painting beast.");	
 // added line
	
 	
 g.setColor(Color.darkGray);
	
 	
 ...
	
 	
 }

	
 private void paintTree(Graphics g)
	
 	
 {
	
 	
 System.out.println("Painting tree.");	
 // added line
	
 	
 Polygon triangle;
	
 	
 ...
	
 	
 }
	
 }

	
 	
 	
 	

Painting sun.
Painting beast.
Painting tree.

The picture is unchanged by these additional lines. The text-only, console window should now contain
the lines:

	
 	
 Painting sun.
	
 	
 Painting beast.
	
 	
 Painting tree.

Each line is created immediately before the corresponding graphic is drawn. However, the speed of the
computer eliminates any chance of seeing this.

When programs get longer, lines printed in the console window are an effective way of finding out which
commands are being performed and in which order. As you might imagine, this is most commonly done
when a program isn’t working correctly.

 Chapter 1 A First Java Program page 1–7

Console window experiment
As an experiment, drag some other window on top of part or all of your image. Now uncover your
complete image. On some computer systems, the lines above will appear an additional time in the
console window. When using these systems, each time a previously covered portion of the picture is
uncovered, the instructions in the paint method of the program are used to draw the uncovered portion of
the image.

Exercise — 1.3
Start with a previous program and add commands that place text in the console window. It is not
necessary to do this extensively, just enough that you understand the effect of placing such commands in
various places within the methods of a program.

page 1–8 Chapter 1 A First Java Program

