
Chapter 3 ! Interaction

3.1 User Interaction & Data Manipulation

A computer program can be thought of as a means by which a computer user manipulates data stored in
the computer.

Not surprisingly, the program must:
1. Keep track of the data.
2. Display the data.
3. Permit the user to manipulate the data.

The programs of chapters 1 & 2 did not provide any data that the user could manipulate. The programs in
this chapter will provide such data. The three requirements listed above appear as standard parts of a
Java program.

1. The data is kept in state variables.
2. A paint method such as used in chapters 1 & 2 is the means by which our Java programs display

the data.
3. Methods called mousePressed and keyPressed connect our program with the user’s actions.

A fourth part of a standard Java program is also required, the constructor. The constructor gives
appropriate starting values to the state variables. It is from this start that the user makes changes.

1. a. The data is kept in state variables.
 b. The data is initialized in by constructor.
2. A paint method displays the data.
3. Methods called mousePressed and keyPressed connect our program with the user’s actions.

State Variables and Painting Methods

The illustration is of a program that responds to mouse
clicks by moving the arrow and the message. This program
appears on the next page.

The data that the user can change is two whole numbers
that describe the position of the point of the arrow. In the
program, these numbers are kept in state variables called
pointX and pointY.

A critical step in implementing an interactive program is to
place variable quantities into the painting method(s).

You Clicked There.

A painting method for a static picture:

	
 private void paintPointer(Graphics g)
	
 	
 {
	
 	
 paintArrow(g, 50, 100);
	
 	
 g.setColor(Color.black);
	
 	
 g.drawString("You Clicked There.", 50 + 30, 100 + 5);
	
 	
 }

 page 3Ð1

To allow changes, some part of the graphics commands will have to changeable. To do this we replace the
parts that we wish to be able to change with the state variables: pointX and pointY.

	
 private void paintPointer(Graphics g)
	
 	
 {
	
 	
 paintArrow(g, pointX, pointY);
	
 	
 g.setColor(Color.black);
	
 	
 g.drawString("You Clicked There.", pointX + 30, pointY + 5);
	
 	
 }

A Program using the Mouse

Four required parts of an interactive program are labeled in the program MovingPointer below.

1a. Description of the data: state!variables

1b. Initialization of the data: constructor

2. Display of the data: paint

3. Manipulation of the data: mousePressed

The data manipulated in MovingPointer is the two state variables, pointX and pointY.

import java.awt.*;
import java.awt.event.*;

public class MovingPointer extends EventPanel
	
 {

	
 private int pointX, pointY;.............." // (1a) pointX & pointY are declared to be integers
	
 public MovingPointer()........................" // (1b) the constructor has the same name as the class and
	
 	
 {	
 	
 	
 	
 // no return type (void does not appear in the signature)
	
 	
 pointX = 50;......................................." // initial values are assigned to pointX & pointY.
	
 	
 pointY = 100;	

	
 	
 }

	
 public void paint(Graphics g)........." // (2) paint uses the variables pointX & pointY by
	
 	
 {	
 	
 	

	
 	
 paintPointer(g);.............................." // calling paintPointer which uses them.
	
 	
 }

	
 private void paintPointer(Graphics g)
	
 	
 {
	
 	
 paintArrow(g, pointX, pointY);
	
 	
 g.setColor(Color.black);
	
 	
 g.drawString("You Clicked There.", pointX + 15, pointY + 5);
	
 	
 }

	
 private void paintArrow(Graphics g, int x, int y)
	
 	
 {
	
 	
 g.setColor(Color.blue);
	
 	
 Polygon p = new Polygon();
	
 	
 p.addPoint(x, y);
	
 	
 p.addPoint(x+12, y-12);
	
 	
 p.addPoint(x+8, y);
	
 	
 p.addPoint(x+12, y+12);
	
 	
 g.fillPolygon(p);
	
 	
 }

	
 public void mousePressed(MouseEvent e)...." // (3) mousePressed responds to the mouse
	
 	
 {
	
 	
 pointX = e.getX();	
......................................." // e.getX() obtains the horizontal mouse position
	
 	
 pointY = e.getY();"" // e.getY() obtains the vertical mouse position
	
 	
 repaint();..." // the system is told that the image in the window
	
 	
 }	
 	
 	
 	
 	
 // is invalid, the system will call the paint method
	
 }

page 3Ð2 Chapter 3 Interaction

The repaint Method

The repaint command in the mousePressed method tells the computer that the image on your program‘s
window should be changed, the computer will call the paint method to redraw your program’s window.
You cannot call the paint method yourself, you must use repaint to inform the computer system that the
window should be redrawn. Indirectly, this will result in a call to your paint method.

public and private Methods

It is appropriate to view each public method in your program as a set of instructions to be followed when
some outside agency (‘the system’) makes a request. Private methods are used by your program to
organize responses to those requests that require an extended response.

The program MovingPointer, above, can be thought of in terms of its responses to the following
conditions:

1. Starting up. The constructor is called.
" pointX is set equal to 50, and pointY is set equal to 100.

2. The image should be updated. The method paint is called.
 The private methods paintPointer and paintArrow are used to update the image.

3. The mouse button is pressed. The method mousePressed is called.
 pointX & pointY are changed to the current mouse position and the system is informed that the

image needs updating.

A General Form for an Interactive Program

The programs we will write will have the following general form:

import java.awt.*;
import java.awt.event.*;

public class Interactive extends EventPanel
	
 {

	
 Declare state variables here
	
 public Interactive()
	
 	
 {
	
 	
 Initialize state variables here.
	
 	
 }

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 Draw to the screen using the method(s) defining the stuff to be drawn.
 Generally one or more private methods using the state variables are called here.
	
 	
 }

	
 public void mousePressed(MouseEvent e)
	
 	
 {
	
 	
 Change some state variables here.
	
 	
 repaint();
	
 	
 }

	
 public void keyPressed(KeyEvent e)
	
 	
 {
	
 	
 Change some state variables here.
	
 	
 repaint();
	
 	
 }
	
 }

 Chapter 3 Interaction page 3Ð3

A Program using Mouse & Keyboard

The program illustrated on the right appears below.
Compare it with the previous program and the general
form of interactive programs above.

import java.awt.*;
import java.awt.event.*;

Click with the mouse for more boxes.
Press a key for fewer boxes.

6 Boxes

public class ManyBoxes extends EventPanel
	
 {

	
 private int numberOfBoxes;................" // (1a) numberOfBoxes is a whole number (integer)
	
 public ManyBoxes()................................." // (1b) the constructor has the same name as the class and
	
 	
 {	
 	
 	
 	
 // no return type (void does not appear in the signature)
	
 	
 numberOfBoxes = 3;.........................." // initial values are assigned
	
 	
 }

	
 public void paint(Graphics g)........." // (2) paint uses numberOfBoxes by calling paintBoxes
	
 	
 {
	
 	
 paintBoxes(g);
	
 	
 paintInstructions(g);
	
 	
 }

	
 private void paintBoxes(Graphics g)
	
 	
 {
	
 	
 int b = 0;
	
 	
 int left = 100, top = 45;
	
 	
 int width = 200, height = 160;
	
 	
 while (b < numberOfBoxes).........." // (2) paintBoxes uses numberOfBoxes here
	
 	
 	
 {
	
 	
 	
 g.drawRect(left, top, width, height);
	
 	
 	
 left += 5; top += 5;
	
 	
 	
 width -= 10; height -= 10;
	
 	
 	
 b++;
	
 	
 }
	
 	
 g.drawString(numberOfBoxes + " Boxes", left + width/2 - 25,
	
 	
 	
 	
 	
 	
 	
 top + height/2 + 5);
	
 	
 }

	
 private void paintInstructions(Graphics g)
	
 	
 {
	
 	
 g.drawString("Click with the mouse for more boxes.", 20, 275);
	
 	
 g.drawString("Press a key for fewer boxes.", 20, 290);
	
 	
 }

 public void mousePressed(MouseEvent e)...." // (3) mousePressed responds to the mouse
	
 	
 {
	
 	
 numberOfBoxes++;.." // the number of boxes is increased
	
 	
 repaint();..." // the system is told that the image in the window
	
 	
 }	
 	
 	
 // is invalid, the system will call the paint method

	
 public void keyPressed(KeyEvent e) // (4) keyPressed responds to the keyboard
	
 	
 {
	
 	
 numberOfBoxes--;.." // the number of boxes is decreased
	
 	
 repaint();..." // the system is told that the image in the window
	
 	
 }	
 	
 	
 	
 	
 // is invalid, the system will call the paint method
	
 }

page 3Ð4 Chapter 3 Interaction

State Variables & Method V ariables

The distinction between state variables, which appear at the beginning of the class, and method variables,
which appear only within methods is important. The following, somewhat fanciful, image of the program
ManyBoxes is intended to give you a view of program structure that will allow you to appreciate the
distinction.

The worker below has been given an explicit job description — the program written above in Java. This
description is framed on the wall.

The worker’s primary responsibility is to keep track of the state variable. The value of the state variable is
on a writing tablet so that the worker can change it.

The requests using ManyBoxes, mousePressed, and keyPressed are quick and easy to handle. A simple
change is made to numberOfBoxes.

Updating the image is not such a simple request. The instructions in paint specify use of paintBoxes which
uses the method variables b, left, top, width, and height to keep track of progress as the individual boxes are
drawn. The method variables are on a quick erase tablet which the worker erases when the method is
finished.

The variables that the user changes with the mouse and keyboard should be state variables — all others
should be method variables.

State
Variables

numberOfBoxes

6

Job Description

Deal with requests:

ManyBoxes
 - constructor
 set numberOfBoxes to 3

paint
 - place graphics on screen
 use paintBoxes and
 paintInstructions

mousePressed
 - increase numberOfBoxes
 and then call repaint

keyPressed
 - increase numberOfBoxes
 and then call repaint

b = 2
left = 110
top = 55

width = 180
height = 140

Method
Variables

Graphics
Image

The worker is in the midst of responding to a paint request. This is evident because the image is only
partially drawn, and also because the method variables from paintBoxes appear on the quick erase tablet.

 Chapter 3 Interaction page 3Ð5

3.2 The Conditional Control Structure if

When programs are written to perform different sets of commands on different occasions, computer
programmers say that the program follows alternate paths of execution.

The particular structures in a programming language that permit a program to follow differing paths of
execution are called the control structures of the language. In addition to the three loop structures
described in chapter 2, there are two control structures that choose alternate paths of execution but do not
cause repetition. These are the conditional statement if and the selection statement switch. The selection
statement switch is discussed at the end of the chapter.

The most basic form of the conditional statement tells the program to execute a statement or block of
statements if some condition is true, otherwise skip to the next statement after the ';' or '}'.

if (true or false expression)	
 	
 if (true or false expression)
	
 command;	
 	
 	
 	
 {
	
 	
 	
 	
 	
 or	
 	
 command;
	
 	
 	
 	
 	
 	
 	
 command; // a block, any number of commands
	
 	
 	
 	
 	
 	
 	
 command;
	
 	
 	
 	
 	
 	
 	
 }

WARNING!!! NEVER place a semi-colon between the true or false expression and the command(s)!

It is often appropriate to have the program do one thing if the condition is met and something else if it is
not met. The if structure can be extended to give two alternative sets of commands; one set will be done:

if (true or false expression)
	
 command;
else
	
 command;

A single command can be replaced by a block of
commands (as in the example above).

The if structure can also be extended in the following way. If you have a list of conditions to check,
chaining if...else statements will allow you to check the conditions, one by one. The command
corresponding to the first true condition is executed. If no condition is met, the last command is executed.

if (true or false expression)
	
 command;
else if (true or false expression)
	
 command;
else if (true or false expression)
	
 command;
else
	
 command;

A single command can be replaced by a block of
commands (as above).

The last else and the last command can be omitted if there
is nothing that should be done only when all of the
expressions are false.

Similarity between if and while

The while structure and the if structure are very nearly identical in form.

The same types of true or false expressions can be used in each. The symbols ==, !=, <, >, <=, and, >= that
appear in chapter 2 can be used with if in the same way that they are used with while.

DO NOT place a semi-colon between the true or false expression and the command(s) when using either
while or if.

page 3Ð6 Chapter 3 Interaction

A Sample program using if

The program on the right appears is very similar to the
previous program, manyBoxes.

The method keyPressed is not used and should be omitted.

Two methods have been changed. The changed methods
are shown below.

Click on the left for fewer boxes.
Click on the right for more boxes.

6 Boxes

private void paintInstructions(Graphics g)
	
 {
	
 g.drawString("Click on the left side for fewer boxes.", 20, 275);
	
 g.drawString("Click on the right side for more boxes.", 20, 290);
	
 }

public void mousePressed(MouseEvent e)
	
 {
	
 if (e.getX() > 200)
	
 	
 numberOfBoxes++;
	
 else
	
 	
 numberOfBoxes--;
	
 repaint();
	
 }

3.3 Mouse Events

Within a mousePressed method, the MouseEvent can be interrogated. The results can be used immediately
or saved for later use. In the example above (repeated here), the x-coordinate of the mouse position is
used just once. It is obtained and used immediately.

	
 public void mousePressed(MouseEvent e)
	
 	
 {
	
 	
 if (e.getX() < 200)
	
 	
 	
 numberOfBoxes++;
	
 	
 ...

To save the x-coordinate and then use it one would write:

	
 public void mousePressed(MouseEvent e)
	
 	
 {
	
 	
 int x = e.getX();	
 // obtaining and saving the x-coordinate
	
 	
 if (x < 200)	
 // using the saved x-coordinate
	
 	
 	
 numberOfBoxes++;
	
 	
 ...

Often, the x and y coordinates are used repeatedly. In this case it is a very good idea to obtain each
coordinate once. The y-coordinate is obtained and saved in the same way as the x-coordinate.

	
 public void mousePressed(MouseEvent e)
	
 	
 {
	
 	
 int x = e.getX();	
 // obtaining and saving the x-coordinate
	
 	
 int y = e.getY();	
 // obtaining and saving the y-coordinate
	
 	
 ...

 Chapter 3 Interaction page 3Ð7

3.4 More Notes on Expressions

Longer expressions, using and and or

Longer true or false expressions, called compound expressions, can be formed with the symbols && (and)
and || (or). The vertical bar ‘| ’ is obtained by shifting the back-slash key to the right of the ‘]’ key.

A compound expression’s ‘truth value’ is determined the way a mathematician or logician would, NOT
the way the expressions would be treated by ordinary people in a conversation. The and(&&)
configuration requires that BOTH parts be true for the expression to be true. The or (||) configuration
produces an expression which is true if ONE or BOTH parts is true. The structure is not as flexible as
English, note the ‘no good’ example below.

Examples:
	
 x == 6 && y == 21	
 OK, but remember, BOTH must be true.
	
 x < 6 || y < 21	
 OK, but remember, true if ONE is true or BOTH are true.
	
 x < 6 && y < 21	
 OK
	
 x < 6 && y > 21	
 OK
	
 5 < x && x < 15	
 OK
	
 x > 5 && x < 15	
 OK (the preceding form is better, it more clearly shows x between 5 and 15)
	
 5 < x < 15	
 NO GOOD: Doesn't work.
	
 x < 8 || y > 50	
 OK
	
 x < 5 || 15 < x	
 OK
	
 x < 5 || x > 15	
 OK (the preceding form is better, it more clearly shows x outside of 5 to 15)
	
 x > 5 && x > 15	
 TOO COMPLEX, if x > 15 it is also greater than 5, so the simple expression

x > 15 gives the same result.
	
 x == 5 && x == 15	
 USELESS, since it is always false — x cannot be equal to 5 and 15

simultaneously.
	
 x < 5 && x > 15	
 USELESS, since it is always false — x cannot be less than 5 and greater than

15 simultaneously.
	
 x > 5 || x < 15	
 USELESS, since it is always true — x is always either greater than 5 or less

than 15 or both.

Comparing Strings and Colors

Strings and Colors can be compared for equality with the symbols == and !=. The results are not always
what you would expect however. Special methods are provided for comparing Strings and Colors. Use
these methods when you want to compare Strings and Colors.

If light and dark are Colors, use:

	
 light.equals(dark) instead of light == dark.
	
 !light.equals(dark) instead of light != dark.	
 // ‘!’ is Java‘s spelling of not

If phrase and sentence are Strings, use:

	
 phrase.equals(sentence) or phrase.equalsIgnoreCase(sentence)
	
 	
 instead of phrase == sentence.
	
 !phrase.equals(sentence) or !phrase.equalsIgnoreCase(sentence)
	
 	
 instead of phrase != sentence.

The compound forms above can be used with Colors and Strings:

	
 light.equals(Color.red) && x < y
	
 light.equals(dark) || !phrase.equalsIgnoreCase("Hello")

page 3Ð8 Chapter 3 Interaction

3.5 Variables and Initialization

IdentiÞers

In Java, as well as many other programming languages, the term identiÞer is used for a name made up by
the programmer for some item in the program. The Java compiler requires that the first character in an
identifier be an alphabetic character. After the first letter, identifiers may contain digits (0…9) and
underscores ‘_’. In practice, Java identifiers are created to somewhat more restrictive rules.

• Identifiers for constants (Þnal variables) are written with all capital letters. Multi-word identifiers
have their component words separated by underscores.

	
 	
 WIDTH ROW_HEIGHT OUTSIDE_DIAMETER NAVY_BLUE

• Identifiers for classes are written with the first letter of each constituent word capitalized. All other
letters are lower case.

	
 	
 Graphics Color TextField EventPanel Button4 Button8

• Identifiers for variables and methods are written in the same way as for classes except that the first
letter is not capitalized. Variables and methods are not confused in programs because the identifier
for a method is always followed by a left parenthesis ‘(‘ and the identifier for a variable is not.

	
 	
 paint left mousePressed outsideDiameter height5

Declaring V ariables

A variable is said to be declared by the portion of the program that states the type of value the variable
may represent.

	
 	
 int left, top Color boxColor String firstName

Initializing V ariables

A variable is said to be initialized by the portion of the program that first gives it a value. Initialization
varies depending on where in the program the variable is declared.

• Variables that are declared in the heading line of a method are initialized in the command that starts
the method running. In the following example, the variables g, left, top, and theColor, are initialized by
g, 300, 20, and Color.red.

	
 	
 	
 paintButton(g, 300, 20, Color.red);
	
 	
 ...
	
 	
 private void paintButton(Graphics g, int left, int top, Color theColor)

• Variables that are declared in the body of a method — between the braces ‘{‘ and ‘}’, should be
initialized immediately after they are declared.

	
 	
 private void doSomething()
	
 	
 	
 {
	
 	
 	
 int left = 150;
	
 	
 	
 Color darkGreen = new Color(0, 120, 0);
	
 	
 	
 char ch = 'd';
	
 	
 	
 ...
	
 	
 	
 }

• State variables — see next page.

 Chapter 3 Interaction page 3Ð9

• State variables — which are declared outside of the methods, should be initialized in a constructor.

	
 	
 private int left;
	
 	
 private Color darkGreen;
	
 	
 private char ch;
	
 	
 ...
	
 	
 public AClass()
	
 	
 	
 {
	
 	
 	
 left = 150;
	
 	
 	
 darkGreen = new Color(0, 120, 0);
	
 	
 	
 ch = 'd';
	
 	
 	
 }

 If you do not initialize state variables:
• Scalar variables will be set to zero — except boolean variables will be set to false.
• Object references will be set to the special value null . When an object reference is null , it can’t be

used. In some cases it will be ignored, in others it will cause a NullPointerException error message
in the console window. If you get a NullPointerException error message in the console window,
check to make sure that all of the state variables are initialized in the constructor.

Scope of a V ariable

The portion of a program in which a variable can be used is called the scope of the variable.

A Java program is of a series of blocks — each block
consisting of a heading line followed by a pair of
braces containing statements. The outermost blocks
are classes. The blocks immediately inside the
classes are methods. Blocks inside methods begin
with while, if, for etc.

A variable can be used in the block in which it is
declared and any block contained within.

In the class illustrated at the right:

	
 The state variables declared at position (1) can be
used throughout the class.

	
 Method variables declared at position (2) can be
used in the constructor AClass only.

	
 Method variables declared at positions (3) and (4)
can be used throughout the method
doSomething, but not outside of doSomething.

	
 Method variables declared at position (5) can be
used in the while loop only.

class AClass
{

public AClass()

... (1)

{

{

... (2)

}

private void doSomething(...(3))

... (4)

while (...)

{

... (5)

}

}

}

page 3Ð10 Chapter 3 Interaction

3.6 Key events

Within a keyPressed method, the KeyEvent can be interrogated. As with a MouseEvent , the results can be
used immediately or saved for later use.

The program illustrated at the right is a modification
of the MovingPointer program of section 3.1. The
words “You clicked there” have been removed from
the display and several keys on the keyboard are
used to change the color of the arrow and to move it
around.

The most important change is the addition of a
keyPressed method, which appears on the next page.

Clicking moves the arrow.
The arrow keys also move the arrow.
R)ed, G)reen & B)lue change color.

import java.awt.*;
import java.awt.event.*;

public class MovingPointer extends EventPanel
	
 {

	
 private int pointX, pointY;
	
 private Color arrowColor;	
 // new state variable for the color of the arrow
	
 public MovingPointer()
	
 	
 {
	
 	
 pointX = 50;
	
 	
 pointY = 100;
	
 	
 arrowColor = Color.red;	
 // initialize the color for the arrow
	
 	
 }

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 paintArrow(g, pointX, pointY);// paint the arrow using the changeable pointX and pointY.
	
 	
 paintInstructions(g);	
 // paint the instructions.
	
 	
 }

	
 private void paintArrow(Graphics g, int x, int y)
	
 	
 {
	
 	
 g.setColor(arrowColor);	
 // use the changeable arrow color
	
 	
 Polygon p = new Polygon();
	
 	
 p.addPoint(x, y);
	
 	
 p.addPoint(x, y);
	
 	
 p.addPoint(x+12, y-12);
	
 	
 p.addPoint(x+8, y);
	
 	
 p.addPoint(x+12, y+12);
	
 	
 g.fillPolygon(p);
	
 	
 }

	
 public void paintInstructions(Graphics g)
	
 	
 {
	
 	
 g.setColor(Color.black);
	
 	
 g.drawString("Clicking moves the arrow.", 10, 265);
	
 	
 g.drawString("The arrow keys also move the arrow.", 10, 280);
	
 	
 g.drawString("R)ed, G)reen & B)lue change color.", 10, 295);
	
 	
 }

 This program is continued on the next page.

 Chapter 3 Interaction page 3Ð11

	
 public void keyPressed(KeyEvent e)	
 // respond to key strokes.
	
 	
 {
	
 	
 if (e.getKeyChar() == 'r') arrowColor = Color.red;
	
 	
 else if (e.getKeyChar() == 'g') arrowColor = Color.green;
	
 	
 else if (e.getKeyChar() == 'b') arrowColor = Color.blue;
	
 	
 else if (e.getKeyCode() == KeyEvent.VK_UP) pointY = pointY - 10;
	
 	
 else if (e.getKeyCode() == KeyEvent.VK_DOWN) pointY = pointY + 10;
	
 	
 else if (e.getKeyCode() == KeyEvent.VK_LEFT) pointX = pointX - 10;
	
 	
 else if (e.getKeyCode() == KeyEvent.VK_RIGHT) pointX = pointX + 10;
	
 	
 repaint();
	
 	
 }

	
 public void mousePressed(MouseEvent e)
	
 	
 {
	
 	
 pointX = e.getX();
	
 	
 pointY = e.getY();
	
 	
 repaint();
	
 	
 }
	
 }

Obtaining information from the KeyEvent is done in one of two ways depending on whether or not the
key that was pressed was an ordinary printable character. For printable characters, getKeyChar is used and
the result is compared with a character placed between single quotes. For special characters, getKeyCode is
used and the special key is described as VK_UP , VK_TAB, VK_ESCAPE etc. The space character can be
written either way:

if (e.getKeyChar() == ' ') do something;
 or
if (e.getKeyCode() == KeyEvent.VK_SPACE) do something;

Considerable typing can be saved and somewhat greater clarity can be achieved by obtaining information
from the KeyEvent and saving it. When the same expression is used repeatedly, this will often save
considerable typing and may improve the readability of the program.

The key code and the key char are different types of data and should be saved in different types of
variables. char is Java’s abbreviation for character.

	
 public void keyPressed(KeyEvent e)
	
 	
 {
	
 	
 char key = e.getKeyChar();
	
 	
 int code = e.getKeyCode();

	
 	
 if (key == 'r') messageColor = Color.red;
	
 	
 else if (key == 'g') arrowColor = Color.green;
	
 	
 else if (key == 'b') arrowColor = Color.blue;
	
 	
 else if (code == KeyEvent.VK_UP) pointY = pointY - 10;
	
 	
 else if (code == KeyEvent.VK_DOWN) pointY = pointY + 10;
	
 	
 else if (code == KeyEvent.VK_LEFT) pointX = pointX - 10;
	
 	
 else if (code == KeyEvent.VK_RIGHT) pointX = pointX + 10;
	
 	
 repaint();
	
 	
 }

page 3Ð12 Chapter 3 Interaction

In order to allow the user to type either an upper case letter or a lower case letter to make a change, a
compound expression can be used in the if statement. The method revised so that the program responds
to both upper case and lower case letters is as follows.

	
 public void keyPressed(KeyEvent e)
	
 	
 {
	
 	
 char key = e.getKeyChar();
	
 	
 int code = e.getKeyCode();

	
 	
 if (key == 'r' || key == 'R') messageColor = Color.red;
	
 	
 else if (key == 'g'|| key == 'G') arrowColor = Color.green;
	
 	
 else if (key == 'b'|| key == 'B') arrowColor = Color.blue;
	
 	
 else if (code == KeyEvent.VK_UP) pointY = pointY - 10;
	
 	
 else if (code == KeyEvent.VK_DOWN) pointY = pointY + 10;
	
 	
 else if (code == KeyEvent.VK_LEFT) pointX = pointX - 10;
	
 	
 else if (code == KeyEvent.VK_RIGHT) pointX = pointX + 10;
	
 	
 repaint();
	
 	
 }

There is a strong temptation to use key == 'r' || 'R' as the compound statement. This is often the way we
would say it in conversation. Be warned, IT WILL NOT WORK CORRECTLY. You must use a complete
true or false expression on both sides of the symbol ‘||’ (which is Java’s spelling of ‘or’).

No compound expression is used for the arrows. The key code is not affected by the shift key. Thus the
arrow keys will work whether or not the shift key is depressed. The key code can be used with printable
characters, but you must be aware that the shift key will have no effect on the code. The following code
will respond to either ‘4’ or ‘$’ (‘$’ is generated by using the shift key with ‘4’).

if (code == KeyEvent.VK_4)
	
 command;

It is possible to determine whether or not the user is holding down the shift key (to type ‘$’), but using
the key char is probably easier.

if (code == KeyEvent.VK_4 && e.isShiftDown())
	
 command;	
 	
 // responds to ‘$’.
if (code == KeyEvent.VK_4 && !e.isShiftDown())
	
 command;	
 	
 // responds to ‘4’. Note the symbol ‘!’(not) before e.isShiftDown

 Chapter 3 Interaction page 3Ð13

3.7 Buttons

Buttons are active spots on the screen that cause some
action to be performed when ‘pressed’ by the mouse. The
figure illustrates a program that uses two buttons.

The intent of the program is that clicking on the More
button increases the number of nested rectangles and
pressing the Fewer button decreases the number.

The program with the above output could be written:

Fewer

More

Currently: 6 Boxes

public class Boxes extends EventPanel
	
 {

	
 private int boxes;

	
 public Boxes()
	
 	
 {
	
 	
 boxes = 3;
	
 	
 }

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 paintBoxes(g);
	
 	
 paintButtons(g);
	
 	
 }

	
 private void paintButtons(Graphics g)
	
 	
 {
	
 	
 g.drawRoundRect(200, 30, 60, 20, 20, 20);
	
 	
 g.drawString("More", 220, 45);
	
 	
 g.drawRoundRect(200, 60, 60, 20, 20, 20);
	
 	
 g.drawString("Fewer", 215, 75);
	
 	
 }

	
 private void paintBoxes(Graphics g)
	
 	
 {
	
 	
 int b = 0;
	
 	
 int left = 5, top = 25;
	
 	
 int width = 150, height = 100;
	
 	
 while (b < boxes)
	
 	
 	
 {
	
 	
 	
 g.drawRect(left, top, width, height);
	
 	
 	
 left += 5; top += 5;
	
 	
 	
 width -= 10; height -= 10;
	
 	
 	
 b++;
	
 	
 	
 }
	
 	
 g.drawString("Currently: " + boxes + " Boxes", 170, 150);
	
 	
 }

	
 public void mousePressed(MouseEvent e)
	
 	
 {
	
 	
 int mx = e.getX();
	
 	
 int my = e.getY();
	
 	
 if (200<mx && mx<260 && 30<my && my<50)
	
 	
 	
 boxes++;
	
 	
 else if (200<mx && mx<260 && 60<my && my<80)
	
 	
 	
 boxes--;
	
 	
 repaint();
	
 	
 }
	
 }

page 3Ð14 Chapter 3 Interaction

There are times when you would like to be able to have an
image redrawn further to the left or the right.

The intent of this program is that clicking on the Left
button causes the image to be displayed to the left of its
current position and the Right button changes the position
to the right. Similar buttons could be included for Up and
Down.

The program with the above output could be written:

Left

Right

	
 public class ChangeLocation extends EventPanel
	
 	
 {
	
 	
 private int xLocation, yLocation;

	
 	
 public ChangeLocation ()
	
 	
 	
 {
	
 	
 	
 xLocation = 150;	
 // changeable horizontal location
	
 	
 	
 yLocation = 100;	
 // changeable vertical location
	
 	
 	
 }

	
 	
 public void paint(Graphics g)
	
 	
 	
 {
	
 	
 	
 paintGraphic(g);
	
 	
 	
 paintButtons(g);
	
 	
 	
 }

	
 	
 private void paintButtons(Graphics g)
	
 	
 	
 {
	
 	
 	
 g.drawRoundRect(300, 30, 60, 20, 20, 20);
	
 	
 	
 g.drawString("Left", 320, 45);
	
 	
 	
 g.drawRoundRect(300, 60, 60, 20, 20, 20);
	
 	
 	
 g.drawString("Right", 315, 75);
	
 	
 	
 }

	
 	
 private void paintGraphic(Graphics g)
	
 	
 	
 {
	
 	
 	
 Polygon triangle;
	
 	
 	
 triangle = new Polygon();
	
 	
 	
 triangle.addPoint(xLocation - 40, yLocation);
	
 	
 	
 triangle.addPoint(xLocation, yLocation - 40);
	
 	
 	
 triangle.addPoint(xLocation + 40, yLocation);
	
 	
 	
 g.drawPolygon(triangle);
	
 	
 	
 g.drawRect(xLocation - 40, yLocation, 80, 80);
	
 	
 	
 }
	
 	
 public void mousePressed(MouseEvent e)
	
 	
 	
 {
	
 	
 	
 int mx = e.getX();
	
 	
 	
 int my = e.getY();
	
 	
 	
 if (300<mx && mx<360 && 30<my && my<50)
	
 	
 	
 	
 xLocation -= 10; 	
 // moves graphic to the left
	
 	
 	
 else if (300<mx && mx<360 && 60<my && my<80)
	
 	
 	
 	
 xLocation += 10; 	
 // moves graphic to the right
	
 	
 	
 repaint();
	
 	
 	
 }
	
 	
 }

The image can be moved off the screen. Barriers should to be placed in the program to keep this from
happening.

 Chapter 3 Interaction page 3Ð15

It is sometimes useful to have an image redrawn with an
increased or decreased size.

The intent of this program is that clicking on the Bigger
button causes the image to be displayed in a larger size
and the Smaller button displays the image in a smaller
size. To facilitate this the image is constructed from a
“central” point rather than a corner.

The program with the above output could be written:

Bigger

Smaller

	
 public class ChangeSize extends EventPanel
	
 	
 {
	
 	
 private int size;

	
 	
 public ChangeLocation ()
	
 	
 	
 {
	
 	
 	
 size = 40;
	
 	
 	
 }

	
 	
 public void paint(Graphics g)
	
 	
 	
 {
	
 	
 	
 paintGraphic(g);
	
 	
 	
 paintButtons(g);
	
 	
 	
 }

	
 	
 private void paintButtons(Graphics g)
	
 	
 	
 {
	
 	
 	
 g.drawRoundRect(300, 30, 60, 20, 20, 20);
	
 	
 	
 g.drawString("Bigger", 320, 45);
	
 	
 	
 g.drawRoundRect(300, 60, 60, 20, 20, 20);
	
 	
 	
 g.drawString("Smaller", 315, 75);
	
 	
 	
 }

	
 	
 private void paintGraphic(Graphics g)
	
 	
 	
 {
	
 	
 	
 Polygon triangle;
	
 	
 	
 triangle = new Polygon();
	
 	
 	
 triangle.addPoint(150 - size, 100);
	
 	
 	
 triangle.addPoint(150, 100 - size);
	
 	
 	
 triangle.addPoint(150 + size, 100);
	
 	
 	
 g.drawPolygon(triangle);
	
 	
 	
 g.drawRect(150 - size, 100, 2*size, 2*size);
	
 	
 	
 }

	
 	
 public void mousePressed(MouseEvent e)
	
 	
 	
 {
	
 	
 	
 int mx = e.getX();
	
 	
 	
 int my = e.getY();
	
 	
 	
 if (300<mx && mx<360 && 30<my && my<50)
	
 	
 	
 	
 size += 5;
	
 	
 	
 else if (300<mx && mx<360 && 60<my && my<80)
	
 	
 	
 	
 size -= 5;
	
 	
 	
 repaint();
	
 	
 	
 }
	
 	
 }

The image will grow or shrink without bound. Barriers should to be placed in the program to keep this
from happening. Section 2.5 discusses how to scale more complex images.

page 3Ð16 Chapter 3 Interaction

3.8 Better Structure with Smaller Methods and Functions

Using additional methods, we can organize the preceding program more clearly. The program of the
previous section is short enough that these methods might not really be necessary, but even here they
help to make the program more readable.

Program structure is often improved by breaking the up some methods in an appropriate way.

Painting the buttons should probably be written as a method for each button. The modified paint method
that uses these methods clearly states what it does.

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 paintBoxes(g);
	
 	
 paintMore(g);
	
 	
 paintFewer(g);
	
 	
 }

	
 private void paintMore(Graphics g)
	
 	
 {
	
 	
 g.drawRoundRect(200, 30, 60, 20, 10, 10);
	
 	
 g.drawString("More", 220, 45);
	
 	
 }

	
 private void paintFewer(Graphics g)
	
 	
 {
	
 	
 g.drawRoundRect(200, 60, 60, 20, 10, 10);
	
 	
 g.drawString("Fewer", 215, 75);
	
 	
 }

Checking for the pressing of the buttons could also be done using a method for each button:

	
 private boolean moreContains(int x, int y)	
 Methods that return answers are functions.
	
 	
 {	
 	
 	
 	
 	
 	
 The type of answer replaces void in the
	
 	
 if (200<x && x<260 && 30<y && y<50)	
 	
 signature. boolean stands for true or false.
	
 	
 	
 return true;	
 	
 	
 	
 (George Boole was a famous logician.)
	
 	
 return false;	
 	

	
 	
 }	
 	
 	
 	
 	
 	
 Methods that don’t return answers are
	
 	
 	
 	
 	
 	
 	
 	
 procedures. The word void is used to indicate
	
 private boolean fewerContains(int x, int y)	
 a procedure.
	
 	
 {
	
 	
 if (200<x && x<260 && 60<y && y<80)
	
 	
 	
 return true;
	
 	
 return false;
	
 	
 }

This allows the mousePressed method to become:

	
 public void mousePressed(MouseEvent e)
	
 	
 {
	
 	
 int mx = e.getX();
	
 	
 int my = e.getY();
	
 	
 if (moreContains(mx, my))	
 	
 Note: moreContains and fewerContains return
	
 	
 	
 boxes++;	
 	
 	
 true or false; they are satisfactory expressions
	
 	
 else if (fewerContains(mx, my))	
 to place in the parentheses following if.
	
 	
 	
 boxes--;	
 	
 	

	
 	
 repaint();
	
 	
 }

 Chapter 3 Interaction page 3Ð17

The Console W indow (a reminder)

Fewer

More

Currently: 6 Boxes

Drawing a box @ 5 25
Drawing a box @ 10 30
Drawing a box @ 15 35
Drawing a box @ 20 40
Drawing a box @ 25 45
Drawing a box @ 30 50

The Console Window is a valuable tool for generating reports on a program’s activities. For example, to
have the drawing of boxes reported in the console window put the line:

	
 System.out.println("Drawing a box @ " + left + " " + top);

in the loop in the paintBoxes method.

Exercises Ñ 3.8

1. Modify MovingPointer(section 3.1) to allow the user to move a graphic of greater complexity than an
arrow. It is usually best to construct such a graphic relative to some central point — the ‘scalable
graphic’ example in section 2.5 shows how to do this.

2. Modify Boxes (sections 3.7 & 3.8) to allow stacking of copies of a graphic image using “More” and
“Fewer” buttons.

3. Modify Boxes (sections 3.7 & 3.8) to allow the user to “build” a row or column of copies of a graphic
image.

4. Modify Boxes (sections 3.7 & 3.8) to allow the user to “build” a diagonal display of copies of a graphic
image.

5. Modify ChangeLocation (section 3.7) to include a move up and a move down feature.

6. Modify ChangeLocation and ChangeSize (section 3.7) to include barriers to prevent changes from
becoming unreasonable.

7. Combine ChangeLocation and ChangeSize (section 3.7) into one program which will have state
variables for size and location. Allow for changing each of the state variables by pressing buttons

page 3Ð18 Chapter 3 Interaction

3.9 The TextField class: Entry of Multi-Character Data

A Program using a TextField

The TextField class is provided with the Java language and
provides for entry of multi-character data items. This section
contains enough information about TextFields to use them in
programs constructed similarly to the ones we have been
writing. A more extensive introduction appears in chapter 9.

Change

Sandy

Sandy

The Java class TextField describes a text field (a typing area that can display a single line of characters).
The contents of the text field can be obtained by using the method getText which returns a String and can
be changed with the method setText. This sample program uses a text field to allow changes to a name
displayed on the screen:

import java.awt.*;
import java.awt.event.*;

public class ChangeableName
	
 	
 	
 	
 	
 extends EventPanel
	
 {
	
 private String theName;
	
 private TextField theField;

	
 public ChangeableName()
	
 	
 {
	
 	
 theName = "Sandy";

(1)	
	
 setLayout(null);

(2)	
	
 theField = new TextField();
(3)	
	
 theField.setLocation(300, 20);
(3)	
	
 theField.setSize(80, 25);
(3)	
	
 theField.setText(theName);
(4)	
	
 add(theField);
	
 	
 }

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 paintChange(g);
	
 	
 paintName(g);
	
 	
 }

private void paintName(Graphics g)
	
 {
	
 g.setColor(Color.red);
	
 g.setFont(new Font("Serif",
	
 	
 	
 	
 	
 Font.BOLD,36));
	
 g.drawString(theName, 30, 200);
	
 }

private void paintChange(Graphics g)
	
 {
	
 g.setColor(Color.black);
	
 g.drawRoundRect(300, 50, 80, 20, 20, 20);
	
 g.drawString("Change", 320, 65);
	
 }

private boolean changeContains(int x, int y)
	
 {
	
 if (300<x && x<300+80 && 50<y && y<50+20)
	
 	
 return true;
	
 return false;
	
 }

public void mousePressed(MouseEvent e)
	
 {
	
 int mx = e.getX(), my = e.getY();
	
 if (changeContains(mx, my))
	
 	
 {
(5)	
	
 theName = theField.getText();
	
 	
 repaint();
	
 	
 }
	
 }
}

Notes on using a text field:
(1) The setLayout method tells Java that you will place and size the text field.
(2) The text field is constructed without knowledge of its location, size or contents.
(3) These methods initialize the text field (size, location and contents.)
(4) The add method arranges for Java to paint the text field at the location set above. Java will also repaint

the text field when appropriate.
(5) The contents of the text field is obtained by getText and transferred to the state variable theName.

 Chapter 3 Interaction page 3Ð19

Obtaining Numeric V alues from a TextField

If you just want to display a number as typed, you can just use the String returned by getText. If you want
to do arithmetic with the number, you will have to convert the String variable that you get with getText to
a numeric variable (double or int). Including one or both of the following methods in your program will
allow you to convert numeric characters in a text field to a double or int .

The two scalar data types ßoat and double represent numbers in ‘scientific notation’. History has overtaken
ßoat (which holds maximum of 7 digits). Computer hardware is now optimized to support double (which
holds 15 digits) and ßoat is little used.

The following methods will convert a String variable to a numeric variable. The method trim removes
spaces from the beginning and end of the string. Users don’t notice spaces, but the converting process
may fail if they are present.

The values –9999 and –9999.99 are returned if the text field does not contain a number acceptable to Java.

	
 private int convertToInt(String s)
	
 	
 {
	
 	
 s = s.trim();
	
 	
 try
	
 	
 	
 {
	
 	
 	
 return (new Integer(s)).intValue();
	
 	
 	
 }
	
 	
 catch (NumberFormatException err)
	
 	
 	
 {
	
 	
 	
 return -9999;
	
 	
 	
 }
	
 	
 }

	
 private double convertToDouble(String s)
	
 	
 {
	
 	
 s = s.trim();
	
 	
 try
	
 	
 	
 {
	
 	
 	
 return (new Double(s)).doubleValue();
	
 	
 	
 }
	
 	
 catch (NumberFormatException err)
	
 	
 	
 {
	
 	
 	
 return -9999.99;
	
 	
 	
 }
	
 	
 }

page 3Ð20 Chapter 3 Interaction

An example using numbers obtained from a TextField

The following program adds the values in the text fields num1 and num2:

public class Adder extends EventPanel
	
 {
	
 private int answer;
	
 private TextField num1, num2;

	
 public Adder()
	
 	
 {
	
 	
 answer = 5;

	
 	
 setLayout(null);

	
 	
 num1 = new TextField();
	
 	
 num1.setLocation(300, 20);
	
 	
 num1.setSize(40, 25);
	
 	
 num1.setText("2");
	
 	
 add(num1);

	
 	
 num2 = new TextField();
	
 	
 num2.setLocation(300, 55);
	
 	
 num2.setSize(40, 25);
	
 	
 num2.setText("3");
	
 	
 add(num2);
	
 	
 }

AddSum: 5

2

3

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 paintAdd(g);
	
 	
 g.setColor(Color.red);
	
 	
 g.setFont(new Font("Serif", Font.BOLD, 36));
	
 	
 g.drawString("Sum: " + answer, 30, 120);
	
 	
 }

	
 private void paintAdd(Graphics g)
	
 	
 {
	
 	
 g.setColor(Color.black);
	
 	
 g.drawRoundRect(300, 90, 40, 20, 20, 20);
	
 	
 g.drawString("Add", 305, 105);
	
 	
 }

	
 private boolean addContains(int x, int y)
	
 {
	
 	
 if (300<x && x<300+40 && 90<y && y<90+20)
	
 	
 	
 return true;
	
 	
 return false;
	
 	
 }

	
 public void mousePressed(MouseEvent e)
	
 	
 {
	
 	
 int mx = e.getX(), my = e.getY();
	
 	
 if (addContains(mx, my))
	
 	
 	
 {
	
 	
 	
 int a = convertToInt(num1.getText());
	
 	
 	
 int b = convertToInt(num2.getText());
	
 	
 	
 answer = a + b;
	
 	
 	
 repaint();
	
 	
 	
 }
	
 	
 }

 Include the convertToInt method on the preceding page here.

	
 }

 Chapter 3 Interaction page 3Ð21

Exercises Ñ 3.9

1. Modify the program Adder to perform multiplication, subtraction and/or division with whole
numbers (positive integers.)

2. Modify the program Adder to perform arithmetic with decimals.

3. Pick by size. Have buttons to choose and display the largest or smallest of the numbers entered in
two text fields.

4. Sort three numbers. Have a sort button which will result in the display of numbers entered in three
text fields in ascending (descending) order.

5. Have the user enter a counting number in a text field, compute the sum of the counting numbers
from 1 to the number in the text field using a loop and then display the sum as a graphic.

6. The statement x = (int) (10 * Math.random() + 1) will pick a random counting number from 1 to 10. Use
this information to have the program display an addition problem. Have the user enter the answer in
a text field. Check the user’s answer and display “correct” or “incorrect” in the graphics window.

7. Find all factors of an integer. Display them in the graphics window.

8. Find the sum of the proper factors of a positive integer. A proper factor is a factor less than the
number.

9. Determine and display in the graphics window whether a positive integer is abundant, deficient or
perfect. If the sum of the proper factors is less than the number it is deficient. If the sum of the proper
factors is greater than the number it is abundant. If the sum of the proper factors is equal to the
number it is perfect.

10.Write a positive integer as the product of prime factors.

11. Pythagorean Theorem. Given the lengths of two sides of a right triangle, display the length of the
third. The statement x = Math.sqrt(y) will compute the square root of y.

12. Determine and display the greatest common divisor (GCD) of two positive integers.

13. Determine and display the lowest common multiple (LCM) of two positive integers.

page 3Ð22 Chapter 3 Interaction

Using keyPressed in a Program with TextFields

The use of keyPress commands in a program with textFields is restricted because of the conflict with
placing characters in a textField. Several keys (such as return(enter) and escape) will not affect a textField
and these can certainly be used. Any character that would not be placed in a textField in the normal use of
your program can be used. A character can be prevented from appearing in a textField by ‘consuming’ the
keyEvent associated with it. See the example below.

In a program with textFields, an additional initialization method call must be made for each textField. This
is required for a keyPressed method to receive notification of keys that are pressed while typing on a
TextField. In the program on the previous page, the correct call, which should be placed in the constructor
is:

	
 theField.addKeyListener(this);

With the modifications below, the program ChangeableName in the preceding section will change the name
when the button is pressed, the return(enter) key is pressed, or the ‘=’ key is pressed.

public class ChangeableName extends EventPanel
	
 {
	
 ... (as above)

	
 public ChangeableName()
	
 	
 {
	
 	
 ... (as above)
	
 	
 theField.setSize(80, 25);
	
 	
 theField.addKeyListener(this);	
 // added method call
	
 	
 add(theField);
	
 	
 }

	
 public void paint(Graphics g)
	
 	
 ... (as above)

	
 public void mousePressed(MouseEvent e)
	
 	
 ... (as above)

	
 public void keyPressed(KeyEvent e)	
 // added method
	
 	
 {
	
 	
 int code = e.getKeyCode();
	
 	
 char key = e.getKeyChar();

	
 	
 if (code == KeyEvent.VK_ENTER)
	
 	
 	
 {
	
 	
 	
 theName = theField.getText();
	
 	
 	
 repaint();
	
 	
 	
 }
	
 	
 else if (key == '=' || key == '+')
	
 	
 	
 {
	
 	
 	
 theName = theField.getText();
	
 	
 	
 e.consume();	
 	
 	
 // keep + and = out of the TextField
	
 	
 	
 repaint();
	
 	
 	
 }
	
 	
 }
	
 }

 Chapter 3 Interaction page 3Ð23

Obtaining the Source of a Key Press

In a program with several text fields, it might be desirable to know which field was selected when the
user pressed a key. In the keyPressed method, the following will accomplish this:

	
 if (e.getSource() == theField)

We might have written the following in the keyPressed method above. Since there is only one text field,
checking for the source is unnecessary.

	
 if (code == KeyEvent.VK_ENTER)
	
 	
 {
	
 	
 if (e.getSource() == theField)
	
 	
 	
 {
	
 	
 	
 theName = theField.getText();
	
 	
 	
 repaint();
	
 	
 	
 }
	
 	
 }

3.10 Anatomy of a class
import java.awt.*
import java.awt.event.*

public class Picture extends EventPanel
{
public static final int MAX = 50;

private int x, y;
private Color theColor;

public Picture()
{
x = 10;
y = 20;
theColor = new Color(0, 150, 0);
}

public void paint(Graphics g)
{
g.setColor(theColor);
g.drawRect(x, y, 50, 50);
}

public void mousePressed(MouseEvent e)
{
x = e.getX();
y = e.getY();
}

}

Java programs
consist of classes.

state variables

 Named
 divisions
 of a class
constructor

 methods

Variables representing actual
parameters are called formal
parameters or dummy variables.

Constructors have the same name as
the class and lack a return type.

Values supplied to a method
are called actual parameters.

a constant

constants and state variables are
placed at the beginning of a
class.

page 3Ð24 Chapter 3 Interaction

Origin of T erms

The word state is used in the same way as it is used in the phrase “state of the union”. It refers to the
current status of an object.

A method is a group of commands designed to perform a specific task. These commands describe the
“method of performing the task”.

A parameter in mathematics is an object that affects the behavior of a second object. The parameters in Java
programs are data values that affect the behavior of methods.

A class is a template or blueprint for an object. The class StaticApplet is a description of a program. The
class Color is a description of a color that can be used on the screen.

A particular StaticApplet or Color is called an object. The object is created when you make a new StaticApplet
or Color. The variable used as a name for the object is used as a reference to the object. Sometimes you will
see the name of an object (reference to that object) and the object spoken of as if they were the same thing.
This is fine if there is no confusion created in the programmer's thinking. We will try to keep the two
straight, since the distinction is critical in some situations.

Objects created from the same class (such as Color.red and Color.orange) differ from each other by the
values of their state!variables which are often called instance!variables in this context.

The choice between the terms state!variable and instance!variable is made depending on whether you are
discussing the differences between two objects of the same class (in which case instance!variable is used) or
you are discussing the changes in a single object over time (in which case state!variable is more
appropriate).

Program Organization

A program in Java consists of one or more classes. Each class contains state (synonym: instance) variables
and methods. The state variables represent the data holding portion of objects made from the class and
are said to define the state of the objects. Each method is a set of commands that manipulates the state
variables and/or reports on the state variables.

Capitalization

Keywords are named using lowercase letters only. In this text, keywords appear in bold face.

	
 import extends public class void int boolean new return while if true

Classes are named with identifiers that start with an upper case letter.

	
 Color Graphics MouseEvent StaticApplet EventPanel

Constants are named with identifiers with all upper case letters.

	
 WIDTH DARK_GREEN VK_DOWN BOXES

All other identifiers start with lower case letters.

	
 x g theColor howMany paint paintBoxes keyPressed moreContains

 Chapter 3 Interaction page 3Ð25

Types of V ariables

Java comes with keywords identifying 8 scalar types: four sizes of integer (byte, short, int , long), two sizes
of numbers that may have fractional values (ßoat, double), character (char) and logical (boolean).

Other types of variables are described by classes (Color, String, Font, Graphics…). Java does not see a sharp
dividing line between data objects (colors, strings, fonts) and programs (which are seen as data objects
with the capability of manipulating their data). The designers of Java see a continuum ranging from static
data objects to dynamic data objects capable of manipulating their data in complex ways.

In the program shown in section 3.5, the type of left and baseline is the scalar type int , the type of theColor
is the class Color, the type of g is the class Graphics, etc. Variables that have a scalar type are called
scalar!variables or simple!variables or primitive!variables. Variables that have a class type are called
object!references.

3.11 An Alternate Conditional Control Structure

The switch Structure

The switch structure is a shorthand form of if É else if É else É that can be used only in certain restricted
circumstances. The principle reason for using the switch structure is convenience. However, when used
correctly, the switch structure may produce faster programs than the equivalent if É else structure.

switch (integer type variable)
	
 {
	
 case integer type constant:
	
 case integer type constant: 	
 // any number of cases
	
 	
 command;	
 	
 // any number of commands
	
 	
 command;	

	
 	
 break;
	
 case integer type constant:	
 // any number of cases
	
 	
 command;	
 	
 // any number of commands
	
 	
 break;
	
 case integer type constant: 	
 // any number of cases
	
 	
 command;	
 	
 // any number of commands
	
 	
 command;	

	
 	
 command;	

	
 	
 break;
	
 default:
	
 	
 command;	
 	
 // any number of commands
	
 }

The constants are values that the variable might attain. Each constant must have a different value. For the
purpose of using the switch statement: byte, short, int , long and char are integer types.

Important note:

DON’T FORGET the break command at the end of each group of commands. Leaving out break commands
will not create syntax errors, but the program will not run properly.

page 3Ð26 Chapter 3 Interaction

