
Chapter 4 ! Objects

4.1 Object Oriented Programming

Object Oriented Programming is a way of organizing a computer program that divides a program into
small parts called objects. The individual objects are very like simple robots that respond to requests that
they send to each other.

Introductory Example

 Commands: b-bigger, s-smaller, m-more points, f-fewer points This example uses a program suggested
by the figure at the left to develop the
concept of an object oriented program.

A written version of the program appears
on the next two pages, broken up into
two sections or classes. Each class
describes a type of object.

A Program with a Single Object

The figure at the right is intended to suggest the structure of a
program such as appears in chapter 3.

A program from chapter 3 consists of a single, comparatively
complex, class describing the actions of an object. This object is
represented in the figure as a smiley face with ears and arms.

The object receives requests from the computer system and
responds by painting images on the screen.

A Program with Three Objects

The lower figure is intended to suggest the structure of a program
from this chapter.

A class similar to, but simpler than, one from chapter 3 describes
the actions of a controller object. This object is represented in the
figure as a smiley face with ears and arms.

A second class describes the actions of a star object. The program
has two star objects, represented in the figure as puppets.

The controller object receives requests from the computer system
and responds by making requests of star objects.

The star objects receive requests from the controller object and
respond by painting images on the screen.

 Chapter 3
Object

 Computer
System

paint
key pressed

Controller

Left Star

Right Star

 Computer
System

paint
key pressed

 page 4Ð1

Java Language instructions to describe a Controller

The controller class for this program describes an object that manipulates two stars. When you run the
program, the computer system creates a controller object from the description and then sends messages
(paint and keyPressed) to the object.

In turn, the controller creates two stars and then sends messages (paint, bigger, smaller, morePoints and
fewerPoints) to the stars. A star is described in a separate class on the next page.

import java.awt.*;
import java.awt.event.*;

public class StarProg extends EventPanel
 {
 private Star leftStar, rightStar;

 public StarProg()
 {
 leftStar = new Star(100, 100);
 rightStar = new Star(250, 100);
 }

 public void paint(Graphics g)
 {
 g.drawString("Commands: b-bigger,
 ... f-fewer points", 20, 20);
 leftStar.paint(g);
 rightStar.paint(g);
 }

 public void keyPressed(KeyEvent e)
 {
 char key = e.getKeyChar();
 if (key == 'b' || key == 'B')
 {
 leftStar.bigger();
 rightStar.bigger();
 repaint();
 }
 else if (key == 's' || key == 'S')
 {
 leftStar.smaller();
 rightStar.smaller();
 repaint();
 }
 else if (key == 'm' || key == 'M')
 {
 leftStar.morePoints();
 rightStar.morePoints();
 repaint();
 }
 else if (key == 'f' || key == 'F')
 {
 leftStar.fewerPoints();
 rightStar.fewerPoints();
 repaint();
 }
 }
 }

Both of these import lines are required in the file
containing a controller.

This program uses leftStar and rightStar as names of
Stars.

Two star objects are created in the constructor, one
for each name. The stars are not created equal —
the stars are given different numbers when they are
created.

The screen shows a line of commands and 2 stars.
leftStar.paint(); is a request directed to leftStar,
rightStar.paint(); is a request directed to rightStar,
– each requests the painting of a single star.

Pressing ‘b’ results in bigger stars.
leftStar.bigger(); is a request directed to leftStar,
rightStar.bigger(); is a request directed to rightStar,
– each is a request to make a star bigger.

Pressing ‘s’ results in small stars.

Pressing ‘m’ results in stars with more points.

Pressing ‘f’ results in stars with fewer points.

If you forget to create an object in the constructor (… = new …) you will get an error message in the
console window when the program is run. The first line of the message will say NullPointerException.

page 4Ð2 Chapter 4 Objects

Java Language instructions to describe a Star

The Star class describes a single star. The controller on the previous page uses this class to create two star
objects. The class Star goes in a file named Star.java, which goes in the same folder as the other files for
this program.

import java.awt.*;

public class Star
! {
! private int x, y, points, radius;
! private Polygon outline;

! public Star(int centerX, int centerY)
! ! {
! ! x = centerX;
! ! y = centerY;
! ! points = 5;
! ! radius = 50;
! ! makeOutline();
! ! }
! public void paint(Graphics g)
! ! {
! ! paintStar(g);
! ! }
! private void paintStar(Graphics g)
! ! {
! ! g.setColor(Color.black);
! ! g.drawPolygon(outline);
! ! }

Each .java file that uses Graphics starts with this
import.

A star’s memory is described here.

The variables that make up the star’s memory
are assigned useful initial values in the
constructor. The commands in the controller
that create the star specify numbers to use as
initial values for x and y. All stars are created
with 5 points and a radius of 50. The outline
will be used to paint the star.

The paint method is analogous to the paint
methods in previous programs.

! private void makeOutline()
! ! {
! ! double angle = 2*Math.PI/points, half = angle/2, ninety = Math.PI/2;
! ! outline = new Polygon();
! ! for (int pt = 0; pt < points; pt++)
! ! ! {
! ! ! double a = angle*pt + ninety, c = Math.cos(a), s = Math.sin(a);
! ! ! outline.addPoint(x + (int)(radius * c), y - (int)(radius * s));
! ! ! a += half; c = Math.cos(a); s = Math.sin(a);
! ! ! outline.addPoint(x + (int)(radius * 0.38 * c), y - (int)(radius * 0.38 * s));
! ! ! }
! ! }

! public void bigger()
! ! {
! ! radius += 10; makeOutline();
! ! }
! public void smaller()
! ! {
! ! if (radius > 10)
! ! ! { radius -= 10; makeOutline(); }
! ! }
! public void morePoints()
! ! {
! ! points++; makeOutline();
! ! }
! public void fewerPoints()
! ! {
! ! if (points > 2)
! ! ! { points--; makeOutline(); }
! ! }
! }

The radius increases by 10 when a star is
commanded to get bigger.

The radius decreases by 10 when a star is
commanded to get smaller. If the star had a
radius of 10 or less to start with, this command
is ignored.

A star adds a point when it is commanded to
have more.

A star loses a point when it is commanded to
have fewer. If the star had 2 or fewer points to
start with, this command is ignored.

 Chapter 4 Objects page 4Ð3

An Alternate Conceptual Overview of the Introductory Example

This figure is a conceptually similar, though more detailed, version of the puppet figure on the first page
of the chapter. In this version, each object is thought of as being an office cubicle with its own bureaucrat.
There is one office with a controller bureaucrat and two offices with star bureaucrats. Each of the star
bureaucrats has the same job description and identically organized data.

to leftStar and
rightStar

controller

from outside
world

Job Description
Deal with

these requests

StarProg
 - constructor

paint
 - place graphics on
 screen by calling
 leftStar and rightStar

keyPressed
 - request changes to
 leftStar and rightStar
 and then repaint

leftStar

from
controller

Job Description
Deal with

these requests

Star
 - constructor

paint
 - place graphics on
 screen

bigger
 - increase radius
smaller
 - decrease radius
morePoints
 - increase points
fewerPoints
 - decrease points

Current
Data

leftStar -
 use phone

rightStar -
 use phone

rightStar

Job Description
Deal with

these requests

Current
Data

points = 5

radius = 50
x = 250
y = 150

Same as leftStar

from
controller

Current
Data

points = 5

radius = 50
x = 50
y = 150

NOTICE: Spend some time comparing the classes on the two preceding pages with the diagram
on this page, the puppet diagram on the first page of the chapter, and the interface
notes on the next page. The relationship between these is the basis upon which Object
Oriented Programming is built. You will be totally frustrated by this chapter and the
next until you understand this relationship.

page 4Ð4 Chapter 4 Objects

Classes from without Ð the Public Interface of a class

The collection of all the lines in a class that start with the keyword public might reasonably be called the
public interface or just the interface* of the class.

The following is the public interface of the class Star in the previous example:

! public Star(int centerHorizontal, int centerVertical)
! public void paint(Graphics g)
! public void bigger()
! public void smaller()
! public void morePoints()
! public void fewerPoints()

This interface lists the vocabulary of a Star. A Star should be thought of as an automaton that understands
the requests: Star, paint, bigger, smaller, morePoints and fewerPoints.

An experienced programmer will also recognize the following by examining the interface:

! public Star(int centerHorizontal, int centerVertical)

 A Star object may be constructed if the position of the center is given as two integers.

! public void paint(Graphics g)

 A Star object can paint an image if given a Graphics object to paint with.

! public void bigger()

 A Star object accepts a command called bigger, presumably causing it to become larger.

! public void smaller()

 A Star object accepts a command called smaller, presumably causing it to become smaller.

! public void morePoints()

 A Star object accepts a command called morePoints, presumably increasing the number of points.

! public void fewerPoints()

 A Star object accepts a command called fewerPoints, presumably decreasing the number of points.

The following is the public interface of the class StarProg:

! public StarProg()
! public void paint(Graphics g)
! public void keyPressed(KeyEvent e)

This interface lists the vocabulary of a StarProg object. A StarProg object understands just three requests:
StarProg, paint and keyPressed.

! public StarProg()

 A StarProg object can be constructed without supplying any information beyond the name.

! public void paint(Graphics g)

 A StarProg object can paint an image if given a Graphics object to paint with.

! public void keyPressed(KeyEvent e)

 A StarProg object handles keyboard input.

* The Java language contains the keyword interface, used when it is desirable to declare that two classes
have similar public interfaces. The use of this declaration is explored in chapter 8.

 Chapter 4 Objects page 4Ð5

Additional methods

These methods were not used in the example and were omitted to simplify the example and to fit it on a
single page. They represent generally useful types of methods that are commonly included in a class.

The class Star should contain the following methods.

public int getRadius()
 {
 return radius;
 }

public int getPoints()
 {
 return points;
 }

public void setRadius(int theRadius)
 {
 radius = theRadius;
 makeOutline();
 }

public void setPoints(int pointCount)
 {
 points = pointCount;
 makeOutline();
 }

public String toString()
 {
 String s = "Star:";
 s += " center (" + x + ", " + y + ")";
 s += ", points = " + points;
 s += ", radius = " + radius;
 return s;
 }

Since the size and number of points of the star
can be changed, an object with a reference to a
star object should be able to obtain these
values. The Accessor methods getRadius and
getPoints serve this purpose.

The Mutator methods setRadius and setPoints
permit the radius and number of points to be
set to new values or reset to values previously
obtained using getRadius and getPoints. They
should check the new values and reject them if
they are unreasonable as smaller and fewerPoints
did, but this was omitted in the interest of
fitting the example on the page.

A toString method is most commonly used to
place information into the console window
when analyzing errors in a program.

Sample output from toString:
Star: center @ (100, 150), points = 5, radius = 50

The class StarProg should also contain a toString method.

public String toString()
 {
 String s = "StarProg:";
 s += " leftStar = " + leftStar;
 s += "; rightStar = " + rightStar;
 return s;
 }

Sample String:
StarProg: leftStar = Star: center @ (100, 150),
points = 5, radius = 50; rightStar = Star: center @
(250, 150), points = 5, radius = 50

This toString method uses the toString method
in the class Star.

toString methods

All classes should have toString methods, the convenient information they provide is often essential.
Examples of toString methods appear above and in the AButton class on page 4–10.

toString methods are used so frequently that a short cut method of calling them is provided. If a string is
being constructed by concatenation and an object reference is included, .toString() is assumed after the
object reference. In the method immediately above, the line s += " leftStar = " + leftStar; is an abbreviation
of s += " leftStar = " + leftStar.toString();.

page 4Ð6 Chapter 4 Objects

Program organization Ð the Controller

In the program in this section, one object – the StarProg object – intercepts requests from the outside
world. The object that intercepts requests from the outside world is commonly called a controller.
Programs should be organized with a controller that performs minimal interpretation of outside requests
and relies on other objects to implement details.

It is good program organization to have a controller that:

1. handles input from outside the program.

2. does minimal processing to interpret the intent of the input.

3. passes requests on to other objects for more detailed processing.

4. DOES NOTHING ELSE. This limits the size and complexity of the controller.

Each of the methods of the class StarProg responds to events that are generated outside of the program.

The constructor is called when a computer user wishes to run the program.
The paint method is called after the constructor is finished and in response to repaint. Many computer
systems will also call paint when the computer user uncovers or deiconifies the program window.
The mousePressed method responds to use of the mouse.
The keyPressed method responds to use of the keyboard.

Exercises Ð 4.1

1. Write a program with more than two stars (or other graphical objects).
2. Write a program with additional commands – change the color of the objects…
3. Write a program with more than one type of object – each getting bigger, each becoming green…

 Chapter 4 Objects page 4Ð7

4.2 Button Class Example

Bigger

Smaller

More Pts.

Fewer Pts.

Here is the previous example with the user interface enhanced by the inclusion of buttons that can be
activated by the mouse. We will make a class to describe a button and use this class to create the buttons.
The controller is modified (to use the buttons). The stars are unmodified. The program is now described
by three classes which are used to create seven objects — one controller, two stars and four buttons.

a controller

1 keeps track of the 2 stars
and 4 buttons.

2 creates the 2 stars and 4
buttons.

3 asks the stars and buttons
to paint themselves.

4 accepts mouse clicks,
checks with the buttons to
find out which one (if any)
was pressed and asks the
stars to make
corresponding changes.

a star

1 keeps track of its position on
the screen, size and number
of points.

2 initializes its position on the
screen, size and number of
points.

3 paints itself.

4 increases its size.

5 decreases its size.

6 increases its number of
points.

7 decreases its number of
points.

a button

1 keeps track of its position on
the screen, size and label.

2 initializes its position on the
screen, size and label.

3 paints itself.

4 reports when a point is
contained within its image
on the screen.

Items numbered 1 in the description above translate into instance variables.
Items numbered 2 in the description translate into constructors.
Items numbered 3 or more in the description translate into methods referred to in these public interfaces:

public StarProg() ! ! ! public AButton(String s, int x, int y)
public void paint(Graphics g) ! ! public void paint(Graphics g)
public void mousePressed(MouseEvent e) ! public boolean contains(int x, int y)

public Star(int centerHorizontal, int centerVertical)
public void paint(Graphics g)
public void bigger()
public void smaller()
public void morePoints()
public void fewerPoints()

page 4Ð8 Chapter 4 Objects

The class describing the Controller

The four capabilities listed for the controller appear as:
(1) the instance variables leftStar, rightStar, bigger, smaller, more and fewer
(2) the constructor StarProg
(3) the method paint
(4) the method mousePressed

public class StarProg extends EventPanel
! {
! private Star leftStar, rightStar;
! private AButton bigger, smaller, more, fewer;

! public StarProg()
! ! {
! ! leftStar = new Star(100, 100);
! ! rightStar = new Star(250, 100);
! ! bigger = new AButton("Bigger", 320, 20);
! ! smaller = new AButton("Smaller", 320, 50);
! ! more = new AButton("More Pts.", 320, 80);
! ! fewer = new AButton("Fewer Pts.", 320, 110);
! ! }

! public void paint(Graphics g)
! ! {
! ! leftStar.paint(g); rightStar.paint(g);
! ! bigger.paint(g); smaller.paint(g); more.paint(g); fewer.paint(g);
! ! }

! public void mousePressed(MouseEvent e)
! ! {
! ! int x = e.getX(), y = e.getY();
! ! if (bigger.contains(x,y))
! ! ! {
! ! ! leftStar.bigger();
! ! ! rightStar.bigger();
! ! ! repaint();
! ! ! }
! ! else if (smaller.contains(x,y))
! ! ! {
! ! ! leftStar.smaller();
! ! ! rightStar.smaller();
! ! ! repaint();
! ! ! }
! ! else if (more.contains(x,y))
! ! ! {
! ! ! leftStar.morePoints();
! ! ! rightStar.morePoints();
! ! ! repaint();
! ! ! }
! ! else if (fewer.contains(x,y))
! ! ! {
! ! ! leftStar.fewerPoints();
! ! ! rightStar.fewerPoints();
! ! ! repaint();
! ! ! }
! ! }
! }

The button bigger is asked if the mouse position
is contained in the button’s image. If so, the
stars are commanded to get bigger.

The button smaller is asked …

The button more is asked …

The button fewer is asked …

The controller uses the same Star class used in section 4.1. This class will need to be part of the project.

 Chapter 4 Objects page 4Ð9

The class describing a button

The four capabilities listed for a button appear as:
(1) the instance variables name, left and top
(2) the constructor AButton
(3) the method paint
(4) the method contains

public class AButton
! {
! public static final int WIDTH = 72, HEIGHT = 20;

! private String name;
! private int left, top;

! public AButton(String theName, int theLeft, int theTop)
! ! {
! ! name = theName;
! ! left = theLeft;
! ! top = theTop;
! ! }

! public void paint(Graphics g)
! ! {
! ! g.setColor(Color.black);
! ! g.fillRoundRect(left+2, top+2, WIDTH, HEIGHT, 18, 18);
! ! g.setColor(Color.white);
! ! g.fillRoundRect(left, top, WIDTH, HEIGHT, 18, 18);
! ! g.setColor(Color.black);
! ! g.drawString(name, left + 5, top + 14);
! ! g.drawRoundRect(left, top, WIDTH, HEIGHT, 18, 18);
! ! }

! public boolean contains(int x, int y)
! ! {
! ! if (left <= x && x <= left + WIDTH &&
! ! ! ! top <= y && y <= top + HEIGHT)
! ! ! return true;
! ! return false;
! ! }

! public String toString()
! ! {
! ! String s = "AButton: " + name;
! ! s += " @ (" + left + ", " + top + ")";
! ! return s;
! ! }

! }

An AButton object can be
created if name (String),
left (int) and top (int) are
supplied.

How to paint an AButton.

An AButton can tell you if
the point (x,y) is contained
within the button.

Sample String:

AButton: Bigger @ (320, 20)

The star program with buttons requires that you provide the three classes StarProg, Star and AButton. The
three files StarProg.java, Star.java and AButton.java should be placed in the program folder.

page 4Ð10 Chapter 4 Objects

Conceptual Overview of the Button Example

There are now several offices whose bureaucrats have the same job description and identically organized
data.

to stars and
buttons

controller

from outside
world

Job Description
Deal with

these requests

StarProg
 - constructor

paint
 - place graphics on
 screen by calling
 stars and buttons

mousePressed
 - request changes to
 stars after
 consultation with
 buttons and then
 repaint

Current
Data

stars -
 use phone

buttons -
 use phone

bigger

from
controller

Job Description
Deal with

these requests

AButton
 - constructor

paint
 - place graphics on
 screen

contains
 - return true or false
 depending on whether
 the point given is
 inside the painted
 image

Current
Data

name = "Bigger"

left = 300

top = 20

leftStar rightStar smaller more

fewer
Stars are unchanged from

the previous example
Buttons are like

ÔbiggerÕ
except for data

values

Bigger

 Chapter 4 Objects page 4Ð11

Exercises Ð 4.2

1. Have your program respond to both mouse and keyboard by putting the keyPressed method of section
4.1 back into the program.

2. Do similar exercises to those in section 4.1, using buttons to change the display.

3. Write a program with color changing buttons. Use a second type of button that appears as a small
colored square. This type of button has no String variable for a name, but it does have a Color variable
that controls its color.

page 4Ð12 Chapter 4 Objects

4.3 Selecting objects

Bigger

Smaller

More Pts.

Fewer Pts.

Click on a star to select it.

The figure is meant to illustrate an ‘improved’ version of the program in which it is possible to use the
buttons to change one star at a time. The idea is that the user clicks on the star that is to be changed, that
star is marked to indicate the users choice and only that star is changed by clicking on the buttons. If the
user clicks on the other star, that star becomes marked and changeable instead. If the user clicks on
neither star (and not on or near a button), both stars become unmarked. The buttons do nothing when
neither star is marked.

To design the new version of the program, start with the following expanded version of the mousePressed
method. The new lines are used only when the mouse is pressed in the vicinity of the stars. When x is less
than 300 the mouse is over by the stars rather than the buttons (the left end of the buttons is at 320).
Added lines are italicized and marked with an bullet.

public void mousePressed(MouseEvent e)
{
int x = e.getX(), y = e.getY();
•! if (x < 300)
•! ! {
•! ! if (leftStar.contains(x, y))
•! ! ! { leftStar.mark(); rightStar.unmark(); }
•! ! else if (rightStar.contains(x,y))
•! ! ! { leftStar.unmark(); rightStar.mark(); }
•! ! else
•! ! ! { leftStar.unmark(); rightStar.unmark(); }
•! ! }
•! else
! ! {
! ! if (bigger.contains(x,y))
! ! ! { leftStar.bigger(); rightStar.bigger(); }
! ! else if (smaller.contains(x,y))
! ! ! { leftStar.smaller(); rightStar.smaller(); }
! ! else if (more.contains(x,y))
! ! ! { leftStar.morePoints(); rightStar.morePoints(); }
! ! else if (fewer.contains(x,y))
! ! ! { leftStar.fewerPoints(); rightStar.fewerPoints(); }
! ! }
! repaint();
! }

This addition to the method mousePressed is made in the controller. The following changes must be made
to the Star class:
• The methods contains, mark and unmark are added to the Star class.
• The methods bigger, smaller, morePoints and fewerPoints are changed so that they only work when the

star is marked.

The revisions to the Star class appear on the next page.

 Chapter 4 Objects page 4Ð13

Additions to the original class Star are in italics and lines with additions are marked with bullets. The
ellipses (...) indicate parts of the program omitted from this listing. These parts are the same as in the
original class Star.

The method contains uses the fact that the class Polygon has a contains method.

	
 public class Star
! ! {
! ! private int points, radius, x, y;
 •! private boolean marked;

! ! public Star(int centerHorizontal, int centerVertical)
! ! ! {
! ! ! ...
 •! ! marked = false ;
! ! ! }

! ! public void paint(Graphics g)
! ! ! {
! ! ! ...
 •! ! if (marked)
 •! ! ! g.drawOval(x-radius, y-radius, 2*radius, 2*radius);
! ! ! }

 •! public boolean contains(int h, int v)
 •! ! {
 •! ! return outline.contains(h, v);
 •! ! }

 •! public void mark()
 •! ! {
 •! ! marked = true ;
 •! ! }

 •! public void unmark()
 •! ! {
 •! ! marked = false ;
 •! ! }

! ! public void bigger()
! ! ! {
 •! ! if (marked)
! ! ! { radius += 10; makeOutline(); }
! ! ! }

! ! public void smaller()
! ! ! {
 •! ! if (marked && radius > 10)
! ! ! ! { radius -= 10; makeOutline(); }
! ! ! }

! ! public void morePoints()
! ! ! {
 •! ! if (marked)
! ! ! ! { points++; makeOutline(); }
! ! ! }

! ! public void fewerPoints()
! ! ! {
 •! ! if (marked && points > 2)
! ! ! ! { points--; makeOutline(); }
! ! ! }
! ! }

page 4Ð14 Chapter 4 Objects

Exercises Ñ 4.3

1. Use three stars.

2. Have clicking on the stars alternately mark and unmark them. It would then be possible to select
more than one at a time. Do this with a toggleMark method in the Star class. Instead of mark and
unMark methods, one method can change the value of the variable marked using the statement
marked = !marked.

4.4 Chapter 4 Review

Signatures - the Þrst line of a method

The information given by the first line of a method is the signature of the method. The signature tells you:
1. Whether classes other that this one can call this method. (public = yes, private = no)
2. What sort of response, if any, is returned to the caller. (void = no response, a type of variable = the type

of response)
3. What information must be supplied when the method is called. The types of information required are

the types of the formal parameters (listed in parentheses).

 Signature
Called from

outside

Type of
response

returned to
caller

Inputs
required

public void bigger() yes none none

public int getRadius() yes int none

public void paint(Graphics g) yes none Graphics

private void paintBoxes(Graphics g) no none Graphics

public void mousePressed(MouseEvent e) yes none MouseEvent

public boolean marked() yes boolean none

public boolean contains(int x, int y) yes boolean two ints

In this chapter, accessors and the contains method of a button return a result.

The method contains replies with true or false (its reply is of boolean type).

The Java code if (bigger.contains(x, y)) makes sense because bigger.contains(x, y) yields a result of true or
false. (if can deal with a result of true or false; in fact, if requires such a result.)

 Chapter 4 Objects page 4Ð15

Anatomy of a Class

class Widget
! {

! private int width;

! public Widget(int aWidth)
! ! {
! ! width = aWidth;
! ! }

! public void paint(Graphics g)
! ! {
! ! g. something...
! ! }

! public void grow(int moreWidth)
! ! {
! ! width += moreWidth;
! ! if (width < 10)
! ! ! width = 10;
! ! }

! public int getWidth()
! ! {
! ! return width;
! ! }

! public void setWidth(int aWidth)
! ! {
! ! if (10 <= aWidth)
! ! ! width = aWidth;
! ! }

! public String toString()
! ! {
! ! return "Widget: " + width;
! ! }
! }

A class is a template or blueprint for one or more
objects. Objects created using this class are called
instances of this class.

The variable width is called a state variable or an
instance variable. Instance variables differentiate the
various objects that might be created using this class.

A class has a constructor which should initialize all state
variables. A constructor has the same name as the class.
A program calls the constructor to create and initialize
an object using this class.

This constructor requires an integer to use as an initial
value for the width.

Many classes have a paint method to let the user see
the status of objects created using the class.

The method grow is called a mutator meaning that it
changes(mutates) the state of an object. Mutators often
contain boundary checks to keep unwanted data
values out of the object.

The method getWidth is called an accessor meaning that
it reports on (permits inspection of) the state of an
object.

The method setWidth is the mutator that complements
getWidth.
A complementary, accessor / mutator pair should
permit an outside class to save and later restore the
state of an object.

All classes should have a toString method. This method
is used by programmers to print out the state variables
(when trying to fix an error in a program).

page 4Ð16 Chapter 4 Objects

