
Chapter 7 Files
7.1 Text Files & Binary Files

A computer file is a named collection of data that is kept on a disk or other device that holds data for an
extended period of time. Most of the icons that appear on the screens of most computers represent files.

Files are divided into two categories by the way in which the data they hold is organized:

• text files — the kind you create by typing at the keyboard (or are created by the computer to look like
such files). A very wide variety of programs can read and write text files.

• binary files — created by the computer with the intention that they will only be read by the computer
(not conveniently read or written by humans). Binary files created by one program are often
incompatible with other programs.

Java can create text files in a convenient way. Java can also conveniently read back the lines in the text file.
Having Java extract individual words, punctuation, and numbers occurring in a single line of text is
considerably more complex. Separating the parts of a line of text is discussed in section 12.3.

Java can easily create a binary file containing a representation of one or more objects. Java can just as
easily read the file later and recreate the objects. The binary files that we will create are called “Object
files”; these are the easiest to use for saving complex objects.

The classes that Java uses for reading and writing files are in the package java.io. To use these classes,
place this line at the beginning of any class the reads or writes files.

	
 import java.io.*;

Applets, Applications & Security
Programs that read from or write to files require security clearance to run as applets. Attempts to read or
write files from applets generally result in security violation exceptions. It is much easier to run such
programs as applications.

7.2 Text Files
Creating a Text File

Text is displayed using System.out with the same commands that would be used for placing text in a text
file. The following is a large portion of the code which creates a text file saved on disk and called
“letter.txt”.

	
 PrintWriter outfile;
	
 outfile = new PrintWriter(new FileOutputStream("letter.txt"));
	
 outfile.println("Dear John,");
	
 outfile.println(" I'm sorry.");
	
 outfile.println(" Love, Jane");
	
 outfile.close();

The first line declares that within the program, we will use the name outfile for our file. Use of the class
PrintWriter declares that:

• The file is a text file;
• Data may be placed in the file with the method println.

The second line creates a file named “letter.txt”; within the program we will use the name outfile.
The next three lines put text into the file.
The last line proclaims that we have finished creating the file.

 page 7–1

Like System.out.println, outfile.println can output a textual representation of the values of variables. Thus,
we can put any data from our program into a text file.

The text files we are creating here are ‘ascii’ text files. These files are not reliably portable containers for
text that uses accent marks or letters other than the 26 letters used in English. Java can readily deal with
‘unicode’ text files which can handle text in almost any language. Unicode was not used here because
unicode is not yet widely understood by non-Java computer programs and one of the principal uses for
text files is interchange of data between programs.

The example above is incomplete. Special ‘error catching’ is required. Such ‘error catching’ must
surround statements that can reasonably be expected to fail because of errors beyond the control of the
programmer. The error prone statements must be surrounded by braces and preceded by the keyword
try. This block of statements must be followed by a block of statements preceded by the keyword catch.
Should an error occur, the statements in the try block stop executing, an error object (belonging to the
class Throwable) is created, and the statements in the catch block are executed (having caught the error —
the Throwable object).

The following creates a file if no error occurs and prints out an error message when one does.

try
	
 {
	
 PrintWriter outfile;
	
 outfile = new PrintWriter(new FileOutputStream("letter.txt"));
	
 outfile.println("Dear John,");
	
 outfile.println(" I'm sorry.");
	
 outfile.println(" Love, Jane");
	
 outfile.close();
	
 }
catch (IOException anError)
	
 {
	
 System.out.println("outfile error> " + anError); // display the error
	
 }

Reading a Text File
The following example reads the file “letter.txt” created in the last section and displays each line in the
console window. You could just as well display the program file “MyPanel.java” by changing “letter.txt”
to “MyPanel.java”. You will not get reasonable results if you try to display the results of “MyPanel.class”
because “MyPanel.class” is not a text file (it is a binary file, intended to be read only by computers).

try
	
 {
	
 BufferedReader infile;
	
 infile = new BufferedReader(new InputStreamReader(
	
 	
 	
 	
 	
 	
 	
 	
 new FileInputStream("letter.txt")));
	
 String line = infile.readLine();	
 // reads the first line so the while loop can test it
	
 while (line != null)
	
 	
 {
	
 	
 System.out.println(line);
	
 	
 line = infile.readLine();	
 // reads subsequent lines which the while loop test before use
	
 	
 }
	
 infile.close();
	
 }
catch (IOException anError)
	
 {
	
 System.out.println("infile error > " + anError); // display the error
	
 }

page 7–2 Chapter 7 Files

The following program allows the user to: create a list of names, see them on the screen, save the names
in a text file, and retrieve the names from the created file – adding the names to the list:

import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class StringProg extends EventPanel
	
 {
	
 private StringList aList;
	
 private TextField nameField;
	
 private AButton addButton, readButton, writeButton;

	
 public StringProg()
	
 	
 {
	
 	
 aList = new StringList();

	
 	
 setLayout(null);
	
 	
 nameField = new TextField("Carole");
	
 	
 nameField.setLocation(300, 30);
	
 	
 nameField.setSize(80, 25);
	
 	
 add(nameField);

	
 	
 addButton = new AButton("Add Name", 300, 70);
	
 	
 readButton = new AButton("Read File", 300, 110);
	
 	
 writeButton = new AButton("Write File", 300, 150);
	
 	
 }

	
 public void mousePressed(MouseEvent e)
	
 	
 {
	
 	
 int x = e.getX(), y = e.getY();
	
 	
 if (addButton.contains(x, y))
	
 	
 	
 {
	
 	
 	
 aList.addLine(nameField.getText());
	
 	
 	
 repaint();
	
 	
 	
 }
	
 	
 else if (readButton.contains(x, y))
	
 	
 	
 {
	
 	
 	
 aList.readTextFile();
	
 	
 	
 repaint();
	
 	
 	
 }
	
 	
 else if (writeButton.contains(x, y))
	
 	
 	
 {
	
 	
 	
 aList.writeTextFile();
	
 	
 	
 repaint();
	
 	
 	
 }
	
 	
 }

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 g.drawString("Name:", 300, 25);
	
 	
 aList.paint(g);
	
 	
 addButton.paint(g);
	
 	
 readButton.paint(g);
	
 	
 writeButton.paint(g);
	
 	
 }
	
 }

class AButton
	
 {
	
 ... (from Chapter 4)
	
 }

class StringList next page...

 Chapter 7 Files page 7–3

class StringList
	
 {
	
 private String list[];
	
 private int howMany;

	
 public StringList()
	
 	
 {
	
 	
 list = new String[30];
	
 	
 howMany = 0;
	
 	
 }

	
 public void addLine(String line)
	
 	
 {
	
 	
 list[howMany] = line;
	
 	
 howMany++;
	
 	
 }

	
 public void readTextFile()
	
 	
 {
	
 	
 try
	
 	
 	
 {
	
 	
 	
 BufferedReader infile;
	
 	
 	
 infile = new BufferedReader(new InputStreamReader(
	
 	
 	
 	
 	
 	
 	
 	
 new FileInputStream("names.txt")));
	
 	
 	
 list[howMany] = infile.readLine();
	
 	
 	
 while (list[howMany] != null)
	
 	
 	
 	
 {
	
 	
 	
 	
 howMany++;
	
 	
 	
 	
 list[howMany] = infile.readLine();
	
 	
 	
 	
 }
	
 	
 	
 infile.close();
	
 	
 	
 }
	
 	
 catch (Throwable anError)
	
 	
 	
 {
	
 	
 	
 System.err.println("readFile> " + anError); // print the error
	
 	
 	
 }
	
 	
 }

	
 public void writeTextFile()
	
 	
 {
	
 	
 try
	
 	
 	
 {
	
 	
 	
 PrintWriter outfile;
	
 	
 	
 outfile = new PrintWriter(new FileOutputStream("names.txt"));
	
 	
 	
 for (int h = 0; h < howMany; h++)
	
 	
 	
 	
 {
	
 	
 	
 	
 outfile.println(list[h]);
	
 	
 	
 	
 }
	
 	
 	
 outfile.close();
	
 	
 	
 }
	
 	
 catch (Throwable anError)
	
 	
 	
 {
	
 	
 	
 System.err.println("writeFile> " + anError); // print the error
	
 	
 	
 }
	
 	
 }

	
 public void paint(Graphics g)
	
 	
 {
	
 	
 for (int h = 0, line = 20; h < howMany; h++, line += 15)
	
 	
 	
 {
	
 	
 	
 g.drawString(list[h], 20 ,line);
	
 	
 	
 }
	
 	
 }
	
 }

page 7–4 Chapter 7 Files

If you wish to break the lines of text you are reading into words, punctuation and numbers, you will need
to do additional programming. Separating the parts of a line of text is discussed in section 12.3.

Exercises — 7.2
1. Display the contents of several text files. Generally, all files whose names end with ‘.java’, ‘.html’ and

‘.txt’ are text files. Word processors create binary files unless you have them ‘save as text’. Sometimes
the ‘save as text’ choice in a word processor is called ‘save as ascii’.

2. Use a dialog box to get the name of the file for reading or writing.

3. Display the information from the file in the graphics window instead of the console window.
Consider paging the information to allow viewing one screen full of information at a time. Allow for
moving forward or backward in the file.

4. Select a program from chapter 6 that displays a list of names and/or numbers. Give the user the
option of creating a text file containing the data.

5. Select a program from chapter 6 that displays a list of names. Give the user the option of having the
program read names from a text file and add them to the list.

7.3 Object files
Creating and Reading an Object file

An Object file will save or restore a complex object with just one statement. An object to be placed in an
Object file must be described by a class declaring that it implements Serializable. You don’t need to do
anything to implement Serializable, except write implements Serializable on the first line of the class. A small
number of the classes that come with Java systems cannot be included in a Serializable class. If you
encounter such an unserializable class, the Java compiler will inform you when you are compiling your
program.

 The following modification of the example in section 7.2 saves the list of names into the binary file
“theList” when the method writeObjectFile is called. Calling the readObjectFile method in the program will
replace the data in the object aList with the data in the file.

To read and write Object files instead of text files, the program of section 7.2 is modified as follows:
• The methods writeObjectFile and readObjectFile are added to the class StringProg.
• The method mousePressed (in StringProg) calls writeObjectFile and readObjectFile instead of

aList.writeTextFile and aList.readTextFile.
• The words implements Serializable are added to the first line of the class StringList.
• The unused methods writeTextFile and readTextFile are removed from the class StringList.

 Chapter 7 Files page 7–5

class StringProg
	
 {
	
 ...
	
 private void writeObjectFile() // Call this method when writeButton is pressed
	
 	
 {
	
 	
 try
	
 	
 	
 {
	
 	
 	
 ObjectOutputStream outfile;
	
 	
 	
 outfile = new ObjectOutputStream(new FileOutputStream("theList"));
	
 	
 	
 outfile.writeObject(aList);
	
 	
 	
 outfile.close();
	
 	
 	
 }
	
 	
 catch (Throwable anError)
	
 	
 	
 {
	
 	
 	
 System.err.println("outfile error> " + anError); // display the error
	
 	
 	
 }
	
 	
 }

	
 private void readObjectFile() // Call this method when readButton is pressed
	
 	
 {
	
 	
 try
	
 	
 	
 {
	
 	
 	
 ObjectInputStream infile;
	
 	
 	
 infile = new ObjectInputStream(new FileInputStream("theList"));
	
 	
 	
 aList = (StringList)infile.readObject();
	
 	
 	
 infile.close();
	
 	
 	
 }
	
 	
 catch (Throwable anError)
	
 	
 	
 {
	
 	
 	
 System.err.println("infile error> " + anError); // display the error
	
 	
 	
 }
	
 	
 }
	
 }

class StringList implements Serializable
	
 {
	
 ... // same as in section 7.2 – the methods readFile and writeFile are not used and may be omitted
	
 }

Writing an object writes the object and any objects that it may extend or contain. All objects that are to be
written to an object file must be defined by a Serializable class; this includes classes defining objects which
appear as instance variables inside a class to be written.

Object files can also contain several objects that are not nested within each other. Include calls to the
method writeObject for each object not nested in any other. To read an object file containing several
separate objects, include a call to the method readObject for each object. You must read the objects in the
same order as they were written.

7.3 Exercises
1. Give the user of one of the stars programs in chapter 4 the option of creating a file containing the state

of the stars. Also supply the option of using this file to restore the stars to this state.

2. Choose other programs in which to allow the user to save the state into a file. Allow the user to
restore the state from the file.

page 7–6 Chapter 7 Files

7.4 File Dialogs
Sections 7.2 and 7.3 used a fixed name for the file. The user of a program should be able to use the
computer’s operating system to see existing files and then choose a name for the file. The following
method will obtain file names in this way. Each method returns null when the user chooses to cancel the
operation.

public String getFileName(boolean readingFromFile, String suggestedFileName)
	
 {
	
 FileDialog fd;
	
 if (readingFromFile)
	
 	
 fd = new FileDialog((Frame)getParent(), "Open", FileDialog.LOAD);
	
 else
	
 	
 fd = new FileDialog((Frame)getParent(), "Save", FileDialog.SAVE);
	
 fd.setDirectory(".");
	
 fd.setName(suggestedFileName);
	
 fd.setVisible(true);
	
 if (fd.getFile() == null)
	
 	
 return null;
	
 return fd.getDirectory() + fd.getFile();
	
 }

Use the result from getFileName as in the following example:

String fileName = getFileName(true, "letter.txt");
if (fileName != null)
	
 try
	
 	
 {
	
 	
 BufferedReader infile;
	
 	
 infile = new BufferedReader(new InputStreamReader(
	
 	
 	
 	
 	
 	
 	
 new FileInputStream(fileName)));
	
 	

If you are constructing your programs as described in the appendices, this method should be part of the
class MyPanel. It will not work as written if it is placed in another class, a class other than the one added
to a Frame.

As written, the method getFileName will only work if it is placed in a Component that has been added to a
Frame. The method uses getParent to reference the Frame. The method can be used in general locations in
an application, but a reference to a Frame must be provided in the constructor of the FileDialog. In
particular, if getFileName is to be placed in a Frame, it will work if the expression (Frame)getParent() is
replaced by this in the two places (Frame)getParent() appears.

The method getFileName will not work in MyPanel with an applet created as described in the appendices
— a Frame would have to be created. File reading or writing generally will not work with applets without
special security settings anyway.

 Chapter 7 Files page 7–7

