
Chapter 8 Interfaces & Subclasses
8.1 Interfaces & Subclasses

In our previous examples, the type of a variable has always been the same as the type of the object named
by that variable:

....	
 Color frameColor;	
 frameColor = new Color(255, 150, 0);

....	
 Font headingFont;	
 headingFont = new Font("Serif", Font.BOLD, 24);
......	
 AButton bigger;	
 bigger = new AButton("Bigger", 300, 50);

It is common to have a list of similar objects that are different enough from each other that some should
be described by one class and some by another. For example, we would like to write:

	
 list[0] = new Oval(10, 20, 100, 50);
	
 list[1] = new Box(150, 80, 100, 50);
	
 list[2] = new Oval(120, 80, 100, 50);

There are two features of Java intended for this type of situation, interfaces and subclasses.

• Interfaces are the simplest to understand and use.

• In addition to providing a solution to the mixed list problem, subclasses allow objects to be described
partly by one class and partly by another and are correspondingly more complex.

8.2 Interfaces
An interface lists a set of features that a class must have to be used in some particular situation. Generally,
an interface is a list of the signatures of public methods. For example:

interface AShape

	
 {

	
 public void paint(Graphics g);

	
 public boolean contains(int x, int y);

	
 public void setLocation(int left, int top);

	
 public void setSize(int width, int height);

	
 public void setColor(Color c);

	
 }

The interface AShape declares that an AShape must have five methods that are called as indicated. The
interface does not say how these methods do what they do. The program fragment below puts three
AShapes into an array. Ovals and Boxes must be AShapes. The definition of “being an AShape” is that the
first line of the class contains implements AShape and the class contains methods such as described in the
interface AShape.

	
 AShape list[];
	

	
 list = new AShape[3];
	

	
 list[0] = new Oval(10, 20, 100, 50);
	
 list[0].setColor(Color.blue);
	
 list[1] = new Box(10, 80, 100, 50);
	
 list[1].setColor(Color.red);
	
 list[2] = new Oval(120, 80, 100, 50);

 page 8–1

Each of the two classes below is an AShape because each declares that it implements AShape and each has
appropriate methods.

	
 class Box implements AShape
	
 	
 {
	
 	
 private int left, top, width, height;
	
 	
 private Color theColor;

	
 	
 public Box(int l, int t, int w, int h)
	
 	
 	
 {
	
 	
 	
 left = l; top = t; width = w; height = h;
	
 	
 	
 theColor = Color.black;
	
 	
 	
 }

	
 	
 public void paint(Graphics g)
	
 	
 	
 {
	
 	
 	
 g.setColor(theColor);
	
 	
 	
 g.fillRect(left, top, width, height);
	
 	
 	
 }

	
 	
 public boolean contains(int x, int y)
	
 	
 	
 {
	
 	
 	
 return left<x && x<left+width && top<y && y<top+height;
	
 	
 	
 }

	
 	
 public void setLocation(int l, int t)
	
 	
 	
 {
	
 	
 	
 left = l; top = t;
	
 	
 	
 }

	
 	
 public void setSize(int h, int w)
	
 	
 	
 {
	
 	
 	
 width = w; height = h;
	
 	
 	
 if (width < 5) width = 5;
	
 	
 	
 if (height < 5) height = 5;
	
 	
 	
 }

	
 	
 public void setColor(Color c)
	
 	
 	
 {
	
 	
 	
 theColor = c;
	
 	
 	
 }
	
 	
 }

The class Oval is identical to Box except for the changes indicated.

	
 class BoxOval implements AShape
	
 	
 {
	
 	
 ...
	
 	
 public BoxOval(int l, int t, int w, int h)
	
 	
 ...
	
 	
 public void paint(Graphics g)
	
 	
 	
 ...
	
 	
 	
 g.fillRectOval(left, top, width, height);
	
 	
 	
 ...

	
 	
 public boolean contains(int x, int y)
	
 	
 	
 {
	
 	
 	
 return left<x && x<left+width && top<y && y<top+height;
	
 	
 	
 double centerX = (left + 0.5*width), centerY = (top + 0.5*height);
	
 	
 	
 double xSquared = (x-centerX)*(x-centerX);
	
 	
 	
 double ySquared = (y-centerY)*(y-centerY);
	
 	
 	
 double ratio = width/height;
	
 	
 	
 return xSquared + ratio*ratio*ySquared < width*width/4.0;
	
 	
 	
 }
	
 	
 ...
	
 	
 }

page 8–2 Chapter 8 Interfaces & Subclasses

The program that follows uses the interface AShape and the classes Box and Oval to create a program that
puts a mixture of ovals and rectangles on the screen. To make an oval, click with the mouse. To make a
rectangle, hold down the control key while clicking with the mouse.

	
 public class ShapeProgram extends EventPanel
	
 	
 {
	
 	
 private AShape list[];
	
 	
 private int howMany;

	
 	
 public ShapeProgram()
	
 	
 	
 {
	
 	
 	
 list = new AShape[100];
	
 	
 	
 howMany = 0;
	
 	
 	
 }

	
 	
 public void paint(Graphics g)
	
 	
 	
 {
	
 	
 	
 for (int h=0; h<howMany; h++)
	
 	
 	
 	
 list[h].paint(g);
	
 	
 	
 }

	
 	
 public void mousePressed(MouseEvent e)
	
 	
 	
 {
	
 	
 	
 int x = e.getX();
	
 	
 	
 int y = e.getY();
	
 	
 	
 if (howMany < 100)
	
 	
 	
 	
 {
	
 	
 	
 	
 if (e.isControlDown())
	
 	
 	
 	
 	
 list[howMany] = new Box(x-50, y-25, 100, 50);
	
 	
 	
 	
 else
	
 	
 	
 	
 	
 list[howMany] = new Oval(x-50, y-25, 100, 50);
	
 	
 	
 	
 howMany++;
	
 	
 	
 	
 repaint();
	
 	
 	
 	
 }
	
 	
 	
 }
	
 	
 }

Exercise — 8.2
1. Use an interface to allow the user to put ovals and rectangles among the stars in one or more programs

of chapter 5. Your interface must have a morePoints and a fewerPoints method. So do the Oval and Box
classes. The morePoints and fewerPoints methods of the Oval and Box classes need not do anything, just
exist.

 Chapter 8 Interfaces & Subclasses page 8–3

8.3 Subclasses – classes that extend others
To extend a class write extends and the name of a class at the beginning of the class definition.

	
 class Peacock extends Bird
	
 	
 {

All but one class in Java is an extension of another. The lone exception is the class Object, which all other
classes extend. When you declare a class and ‘don’t extend another class’, Java acts as though you had
typed extends Object.

The term subclass is used for a class that extends another. Subclass is derived from the mathematical term
subset. The class Peacock (above) extends Bird, creating a Peacock as a fancied up Bird. We consider an object
created from the class Peacock to be both a Peacock and a Bird. Peacock is said to be a subclass of Bird,
emphasizing that the set of all Peacock objects is a subset of the set of all Bird objects.

A class that has been extended (Bird) is called the superclass (of Peacock).

The terms base class (for superclass) and extending class (for subclass) are also used and expresses a
central aspect of the relationship — the subclass extends the capabilities of the superclass.

When one class extends another, it inherits methods, variables, interfaces and superclasses. The new class
can also override an inherited method — replacing it with its own. This is done by providing the subclass
with a method having the same signature as the method to be overridden.

• If a subclass has a method with the same signature as a method of the superclass, the new
method will override (be used instead of) the method of the superclass.

• If a subclass has no method with a signature like a given method of its superclass, objects created
from the subclass will use the method of the superclass.

In previous program examples, we extended EventPanel, which is itself an extended version of the class
Panel. We extended EventPanel so we could use methods that existed in Panel (repaint, setBackground). We
also supplied methods that did something to override do-nothing methods that existed in Panel (paint)
and EventPanel (keyPressed, mousePressed).

Extending a class brings up the question of accessing the variables and calling the methods of the
superclass. It is often appropriate to do this.

• In general, methods in the superclass can be accessed if they have been declared public. Accessor
and mutator methods are placed in the superclass so that variables can be accessed by the
subclass.

• Methods in a subclass can access a method overridden by that subclass (rather than the one in the
subclass that has done the overriding). To do this write super. in front of the name of the method
when you call it. For example, to access an overridden paint method write super.paint(g).

• To access a constructor of the class you have extended, you write super in front of the parameters
for the constructor. This is only done as the first command in a constructor. A example appears in
the class Oval below.

page 8–4 Chapter 8 Interfaces & Subclasses

An extended class
The following example creates the class Oval of the previous example. It will work as written if accessor
methods are included in the class Box.

	
 class Oval extends Box
	
 	
 {
	
 	
 public Oval(int l, int t, int w, int h)
	
 	
 	
 {
	
 	
 	
 super(l, t, w, h);	
 // The constructor of the superclass (Box) initializes the variables.
	
 	
 	
 }	
 	
 	
 // The constructor for the superclass must be used.

	
 	
 public void paint(Graphics g)
	
 	
 	
 {
	
 	
 	
 g.setColor(getTheColor());	
	
 // These get… methods are in the superclass.
	
 	
 	
 g.fillOval(getLeft(), getTop(), getWidth(), getHeight());
	
 	
 	
 }

	
 	
 public boolean contains(int x, int y)
	
 	
 	
 {
	
 	
 	
 int width = getWidth(), height = getHeight();
	
 	
 	
 if (height == 0)
	
 	
 	
 	
 return false;
	
 	
 	
 double centerX = (getLeft() + 0.5*width); // Uses the Pythagorean theorem with
	
 	
 	
 double centerY = (getTop() + 0.5*height); // a fudge factor (ratio) for the oval.
	
 	
 	
 double xSquared = (x-centerX)*(x-centerX);
	
 	
 	
 double ySquared = (y-centerY)*(y-centerY);
	
 	
 	
 double ratio = width / height;
	
 	
 	
 return xSquared + ratio*ySquared < height/4.0;
	
 	
 	
 }
	
 	
 }

The above is the complete class Oval (given that Box is available with accessor methods getTheColor, getTop
etc.). Compare this to the description in section 8.2 of how to modify Box to obtain Oval. Objects created
with the class Oval as written above can be used in a list of AShapes. They inherit the property of
implementing AShape.

Extending a class is like Implementing an interface
In one very important way, the relationship between superclass and subclass is the same as the
relationship between interface and implementing class: an implementing class has all of the methods of
the interface — a subclass has all of the methods of the superclass.

Extending a class may override methods, supplying a substitute. Extending never hides a method
without providing a replacement. In fact, overriding a public method with a private one is not permitted,
just so that this will be true.

Java recognizes this similarity by giving a class that extends another similar rights to those of a class that
implements an interface. A variable whose type is a class can be used to refer to an object belonging to a
subclass:

class Oval extends Box
	
 ...
	
 Box b;
	
 ...
	
 b = new Box(); or b = new Oval();

Either of the assignments above is acceptable. We can do this because Oval has methods to match those of
Box. b.paint(g), b.contains(x, y)… make sense in either case.

 Chapter 8 Interfaces & Subclasses page 8–5

An example that uses overridden methods
This class adds to the overridden methods setColor and paint rather than completely replacing them:

	
 class OvalOnBox extends Box
	
 	
 {
	
 	
 private Color ovalColor;

	
 	
 public OvalOnBox(int l, int t, int w, int h)
	
 	
 	
 {
	
 	
 	
 super(l, t, w, h);	
 // The superclass constructor must come first.
	
 	
 	
 ovalColor = Color.darkGray;	
 // The variables of the subclass are then initialized.
	
 	
 	
 }

	
 	
 public void setColor(Color c)
	
 	
 	
 {
	
 	
 	
 if (!c.equals(c.darker()))	
 // put a darker color behind (if different)
	
 	
 	
 	
 {
	
 	
 	
 	
 super.setColor(c.darker());
	
 	
 	
 	
 ovalColor = c;
	
 	
 	
 	
 }
	
 	
 	
 else if (!c.equals(c.brighter()))	
 // else put a brighter color in front (if different)
	
 	
 	
 	
 {
	
 	
 	
 	
 super.setColor(c);
	
 	
 	
 	
 ovalColor = c.brighter();
	
 	
 	
 	
 }
	
 	
 	
 else	
 	
 // black is unchanged by both brighter and darker.
	
 	
 	
 	
 {
	
 	
 	
 	
 super.setColor(c);
	
 	
 	
 	
 ovalColor = Color.darkGray;
	
 	
 	
 	
 }
	
 	
 	
 }

	
 	
 public void paint(Graphics g)
	
 	
 	
 {
	
 	
 	
 super.paint(g);
	
 	
 	
 g.setColor(ovalColor);
	
 	
 	
 g.fillOval(getLeft(), getTop(), getWidth(), getHeight());
	
 	
 	
 }
	
 	
 }

page 8–6 Chapter 8 Interfaces & Subclasses

