
Chapter 9 Buttons, Canvases, Controllers & Viewers
9.0 Introduction

This chapter is about the method of interactive program organization known as the Controller, Model,
Viewer model. Most of the chapter introduces suitable standard Java classes with which to implement the
model. The terms controller, model, and viewer appear in section 9.6.

The Java Component types discussed below: Panel, Canvas, Label, TextField, and Button are quite convenient
to use for this type of organization. Most of this chapter is an introduction to these component types in
Java and how to get them to work together.

NOTE:

 The programs in previous chapters used mousePressed and keyPressed for all interaction. A

considerable amount of setup required to use these was hidden (in the class EventPanel). From this
point on mousePressed, keyPressed and EventPanel are rarely used. When Buttons and TextFields are
used in Java programs, the alternate event handlers discussed in this chapter are ordinarily used.
These event handlers require similar setup, which is included in the examples below.

9.1 Components

A Java program usually displays several visible Components. In the previous chapters of the text, the
programs are created by customizing a single Component. The only exceptions being those programs that
display TextFields — each TextField being a separate Component. Programs from this point on use several
visible components.

Five types of Component appear in the diagram. These will be sufficient for our purposes.

A Panel is generally used as a background onto which the other components are placed. Of the five types
of component shown, only a Panel can have other components placed onto it.

A Canvas is a component whose graphics can be customized by extending Canvas and supplying a paint
method. While the graphics on a Panel can also be customized in this way, custom graphics generally
appear on a Canvas.

A Label displays text on a single line.

A TextField displays text on a single line
contained in a box. Usually the user
can edit this text. A text field comes
with methods that make it easy for
the program to react the user’s
editing.

A Button invites the user to click on it.
A button comes with methods that
make it easy for the program to
react the user’s clicking.

Bigger

Smaller

Sandy

Text:

Update Panel

Label

TextField

Button

Canvas

Sandy

 page 9–1

9.2 Placing Components

Each program in this text displays a Panel. All of the interactive programs start with either PanelApplet or
PanelApplication, either of which places the Panel appropriately so that it will be displayed. Other
Components are placed on this Panel.

The components should be created and placed in the constructor of the Panel. The class TextPanel below
places the Label, the TextField, the Canvas, and one Button (of the program shown above) onto itself.

The use of the standard class Canvas below, makes the canvas blank. A real program would extend Canvas
to provide a Canvas with a paint method that displayed the program's output.

	

 public class TextPanel extends Panel
	

 	

 {
	

 	

 private static final Color BACK = new Color(200, 225, 255);

	

 	

 private Label textLabel;
	

 	

 private TextField textField;
	

 	

 private Canvas canvas;
	

 	

 private Button updateButton;

	

 	

 public TextPanel()
	

 	

 	

 {
	

 	

 	

 setLayout(null);	

 // prevents Java from placing and sizing the components
	

 	

 	

 setBackground(BACK);	

 // sets the color of the Panel to light blue-green
	

 	

 	

 textLabel = new Label("Text:");
	

 	

 	

 textLabel.setSize(80, 25);
	

 	

 	

 textLabel.setLocation(30, 140);
	

 	

 	

 textLabel.setBackground(BACK);	

 // matches the background of the Label to the Panel
	

 	

 	

 add(textLabel));	

 // places the Label onto the Panel
	

 	

 	

 textField = new TextField("Sandy");
	

 	

 	

 textField.setSize(80, 25);
	

 	

 	

 textField.setLocation(20, 170);
	

 	

 	

 textField.setBackground(Color.white);	

 // makes the background of the Field white
	

 	

 	

 add(textField));	

 	

 // places the Field onto the Panel
	

 	

 	

 canvas = new Canvas();
	

 	

 	

 canvas.setSize(280, 120);
	

 	

 	

 canvas.setLocation(10, 10);
	

 	

 	

 canvas.setBackground(Color.white);	

// makes the background of the Canvas white
	

 	

 	

 add(canvas));	

 	

 // places the Canvas onto the Panel
	

 	

 	

 updateButton = new Button("Update");
	

 	

 	

 updateButton.setSize(80, 25);
	

 	

 	

 updateButton.setLocation(20, 200);
	

 	

 	

 add(updateButton));	

 // places the Button onto the Panel
	

 	

 }
	

 }

Each of the components has its size and location set. The colors of most of the components are also set. In
some systems colors of components are inherited from the Panel, in others they are not. Set each color
yourself so that the components will always be colored as you intend. Buttons seem to color
appropriately, so I let buttons be an exception and don’t attempt to color them.

NOTE:

 At this point we have a program that does not react to the user. How to set things up so that the

components communicate with each other is the subject of the rest of the chapter.

page 9–2
 Chapter 9 Buttons, Canvases, Controllers & Viewers

9.3 Buttons and ‘Actions’
There is no Canvas in this section. The example is written by customizing the Panel, as was done in
previous chapters. The use of a Canvas, which is the ‘right’ way to do things, first appears in section 9.5.

The usual way to interact with a Button, is to use the event handler actionPerformed. Using actionPerformed
requires two ‘setup statements’. These statements are included in the sample program below:

	

 import java.awt.*;
	

 import java.awt.event.*;

	

 public class ChangeableName extends Panel implements ActionListener ← note 1

	

 private String theName;
	

 private TextField theField;
	

 private Button theButton;

	

 public ChangeableName()
	

 	

 {
	

 	

 theName = "Sandy";

	

 	

 setLayout(null);

	

 	

 theField = new TextField();
	

 	

 theField.setLocation(20, 170);
	

 	

 theField.setSize(80, 25);
	

 	

 theField.setText(theName);
	

 	

 add(theField);

Sandy
Sandy

Update

	

 	

 theButton = new Button("Update");
	

 	

 theButton.setLocation(20, 210);
	

 	

 theButton.setSize(80, 25);
	

 	

 add(theButton);

	

 	

 theButton.addActionListener(this); ← note 2
 This statement informs theButton that the
	

 	

 }	

 	

 	

 	

 	

 actionPerformed method is in this class.

	

 public void paint(Graphics g)
	

 	

 {
	

 	

 g.setColor(Color.red);
	

 	

 g.setFont(new Font("Serif", Font.BOLD, 36));
	

 	

 g.drawString(theName, 30, 200);
	

 	

 }

	

 public void actionPerformed(ActionEvent e)
	

 	

 {
	

 	

 Object source = e.getSource();
	

 	

 if (source == theButton)
	

 	

 	

 {
	

 	

 	

 theName = theField.getText();
	

 	

 	

 repaint();
	

 	

 	

 }
	

 	

 }
	

 }

Notes:
1.
 A class that contains an actionPerformed event handler declares that it implements ActionListener.
2.
 A Button can activate an actionPerformed event handler. Only after an addActionListener method has

been called, will it do so.

 Chapter 9 Buttons, Canvases, Controllers & Viewers
 page 9–3

9.4 TextFields and ‘Actions’
TextFields can easily be made to act much like Buttons — pressing return or enter while typing in a
TextField can call an actionPerformed method. To have the TextField in the program above call
actionPerformed, add a line to the constructor:

	

 	

 theButton.addActionListener(this);
	

 	

 theField.addActionListener(this);
 ← add this line

Also, check for the TextField in the actionPerformed method:

	

 public void actionPerformed(ActionEvent e)
	

 	

 {
	

 	

 Object source = e.getSource();
	

 	

 if (source == theButton || source == theField)	

 ← add a reference to theField
	

 	

 	

 {
	

 	

 	

 theName = theField.getText();
	

 	

 	

 repaint();
	

 	

 	

 }
	

 	

 }

TextFields and TextEvents

There is an alternate event handler which can be used with TextFields. This handler, textValueChanged, is
called whenever the user changes the contents of the TextField. If textValueChanged is used in the
preceding example, the name in large print will change as the user types. To use textValueChanged:

1. Remove the button (and all references to the button).

 A button cannot call textValueChanged and the button will be useless anyway. Remove it.
2. Change implements ActionListener to implements TextListener.
3. Change the method name actionPerformed to textValueChanged.
4. Change the parameter type in textValueChanged to TextEvent.

Using a TextField to Input a Number
If you just want to display a number as typed, there is no particular difficulty. The way in which text is
handled above will do. If you want to do arithmetic with the number, you will have to convert the string
variable that you get from the text field to a numeric variable (double or int).

The code to convert a string variable to a numeric variable is:

double
	

 String s = numberField.getText();
	

 String error = "";
	

 double d = -99999;
	

 boolean ok = true;
	

 s = s.trim();
	

 try
	

 	

 {
	

 	

 d = (new Double(s)).doubleValue();
	

 	

 }
	

 catch (NumberFormatException err)
	

 	

 {
	

 	

 error = err;
	

 	

 ok = false;
	

 	

 }

int
String s = numberField.getText();
String error = "";
int i = -99999;
boolean ok = true;
s = s.trim();
try
	

 {
	

 i = (new Integer(s)).intValue();
	

 }
catch (NumberFormatException err)
	

 {
	

 error = err;
	

 ok = false;
	

 }

page 9–4
 Chapter 9 Buttons, Canvases, Controllers & Viewers

The method trim removes spaces from either end of the string. User are often unaware of such spaces, but
conversion may fail if spaces are present.

After the above code has been executed:

 •
 the value of d or i will be the desired number.

 •
 error will be the empty string.

 •
 ok will be true.

or •
 d or i will be –99999.
•
 error will describe what went wrong.
•
 ok will be false.

A simplified version of this number conversion code appears in the methods convertToDouble and
convertToInt in section 3.8.

9.5 Canvases

Painting on a Panel that holds Buttons and TextFields
is rarely done. The painting is usually done on a
separate Canvas.

A modified version of the program above is
described below. In this version there are four visible
components:

 1.
 A Panel: the shaded background.

 2.
 A TextField: shows "Sandy".

 3.
 A Button: labeled "Change".

 4.
 A Canvas: shows "Sandy" in a large font.

Sandy
Change Sandy

The Panel is described by extending the class Panel to create a customized Panel: ChangeableName.

 The version of ChangeableName for this program appears on the next page.
The TextField and the Button are created using the standard classes TextField and Button.
The Canvas is described by extending the class Canvas to create a customized Canvas: NameCanvas.

 The class NameCanvas appears immediately below.

	

 import java.awt.*;

	

 public class NameCanvas extends Canvas
	

 	

 {
	

 	

 private String name;

	

 	

 public NameCanvas(String n)
	

 	

 	

 {
	

 	

 	

 name = n;
	

 	

 	

 }

	

 	

 public void paint(Graphics g)
	

 	

 	

 {
	

 	

 	

 g.setColor(Color.red);
	

 	

 	

 g.setFont(new Font("Serif", Font.BOLD, 36));
	

 	

 	

 g.drawString(name, 30, 90);
	

 	

 	

 }

	

 	

 public void setName(String n)
	

 	

 	

 {
	

 	

 	

 name = n;
	

 	

 	

 }
	

 	

 }

 Chapter 9 Buttons, Canvases, Controllers & Viewers
 page 9–5

Note the background color setup for each Component. It is important to set the background colors since
different systems will set the colors of the TextField and Canvas differently if you don’t set them explicitly.
I generally don’t bother setting the color of a Button, and never seem to have a problem.

Note that the call to repaint (in the actionPerformed method) is theCanvas.repaint(). Just calling repaint()
would repaint the Panel — which is not what you want, since the panel provides only the unchanging
background.

	

 import java.awt.*;
	

 import java.awt.event.*;

	

 public class ChangeableName extends Panel implements ActionListener
	

 	

 {
	

 	

 private TextField theField;
	

 	

 private Button theButton;
	

 	

 private NameCanvas theCanvas;

	

 	

 public ChangeableName()
	

 	

 	

 	

 {
	

 	

 	

 setLayout(null);
	

 	

 	

 setBackground(new Color(200, 225, 255));	

 ← sets the color of the Panel (light blue)
	

 	

 	

 theField = new TextField("Sandy");
	

 	

 	

 theField.setLocation(50, 180);
	

 	

 	

 theField.setSize(80, 25);
	

 	

 	

 theField.setBackground(Color.white);	

 ←
 sets the color of the TextField (white)
	

 	

 	

 add(theField);	

	

 	

 Set the background of the field,
	

 	

 	

 	

 	

 	

 	

 otherwise it may inherit from the Panel
	

 	

 	

 theButton = new Button("Change");
	

 	

 	

 theButton.setLocation(50, 180);
	

 	

 	

 theButton.setSize(80, 25);
	

 	

 	

 add(theButton);

	

 	

 	

 theCanvas = new NameCanvas("Sandy");
	

 	

 	

 theCanvas.setLocation(10, 10);
	

 	

 	

 theCanvas.setSize(380, 160);
	

 	

 	

 theCanvas.setBackground(Color.white);	

←	

 sets the color of the Canvas (white)
	

 	

 	

 add(theCanvas);

	

 	

 	

 theButton.addActionListener(this);
	

 	

 	

 theField.addActionListener(this);
	

 	

 	

 }

	

 	

 public void actionPerformed(ActionEvent e)
	

 	

 	

 {
	

 	

 	

 Object source = e.getSource();
	

 	

 	

 if (source == theButton || source == theField)
	

 	

 	

 	

 {
	

 	

 	

 	

 theCanvas.setName(theField.getText());
	

 	

 	

 	

 theCanvas.repaint();
	

 	

 	

 	

 }
	

 	

 	

 }
	

 	

 }

page 9–6
 Chapter 9 Buttons, Canvases, Controllers & Viewers

9.6 A Controller, a Model, and a Viewer

The general idea is that the data is kept in one
object (the model), a second object (the viewer) is
used to display the data, and a third object (the
controller) is used to link user actions with data
manipulations .

This example uses two additional objects.

	

 One of these is a second viewer, which is
included with the intent of clarifying the
distinction between model and viewer.

Bigger

Smaller

More Pts.

Fewer Pts.

The Star
Points: 5
Radius: 40

 The second is a ‘set up’ object that creates the model, the viewers, the controller, and the buttons that
interact directly with the user. The setup object also sets up communication between the various
objects.

The classes that define this program appear below in the following order:

 The setup object:
 described in the class StarPanel.

 The controller:
 described in the class Manager.

 The two viewers:
 described in the classes StarCanvas and StatsCanvas.

 The model:

 described in the class Star (a similar class appears in chapter 4).

import java.awt.*;
import java.awt.event.*;

public class StarPanel extends Panel
	

 {
	

 private Button moreButton, fewerButton, biggerButton, smallerButton;
	

 private Star theStar;
	

 private StarCanvas starCanvas;
	

 private StatsCanvas statsCanvas;
	

 private Manager manager;

	

 public StarPanel()
	

 	

 {
	

 	

 setLayout(null);
	

 	

 setBackground(new Color(200, 225, 255));

	

 	

 moreButton = new Button("More Points");
	

 	

 moreButton.setLocation(305, 20);
	

 	

 moreButton.setSize(80, 25);
	

 	

 add(moreButton);

	

 	

 fewerButton = new Button("Fewer Points");
	

 	

 fewerButton.setLocation(305, 60);
	

 	

 fewerButton.setSize(80, 25);
	

 	

 add(fewerButton);

	

 	

 biggerButton = new Button("Bigger");
	

 	

 biggerButton.setLocation(305, 100);
	

 	

 biggerButton.setSize(80, 25);
	

 	

 add(biggerButton);

	

 	

 smallerButton = new Button("Smaller");
	

 	

 smallerButton.setLocation(305, 140);
	

 	

 smallerButton.setSize(80, 25);
	

 	

 add(smallerButton);

 Chapter 9 Buttons, Canvases, Controllers & Viewers
 page 9–7

	

 	

 theStar = new Star(140, 140);

	

 	

 starCanvas = new StarCanvas(theStar); ← starCanvas displays theStar.
	

 	

 starCanvas.setLocation(10, 10);
	

 	

 starCanvas.setSize(280, 280);
	

 	

 starCanvas.setBackground(Color.white);
	

 	

 add(starCanvas);

 Since starCanvas displays theStar, it must know of theStar’s existence. StarCanvas is
constructed after theStar — it cannot be informed of a Star that is not yet created.

	

 	

 statsCanvas = new StatsCanvas(theStar); ← statsCanvas displays data from theStar.
	

 	

 statsCanvas.setLocation(300, 200);
	

 	

 statsCanvas.setSize(90, 70);
	

 	

 statsCanvas.setBackground(Color.white);
	

 	

 add(statsCanvas);

 StatsCanvas displays information about theStar, and thus must know of theStar’s existence.
Like the starCanvas, statsCanvas is constructed after theStar.

	

 	

 manager = new Manager(theStar, starCanvas, statsCanvas,
	

 	

 	

 	

 	

 moreButton, fewerButton, biggerButton, smallerButton);

 Since the manager will be checking the buttons, changing the star, and repainting the
canvases, it must know of their existence. The manager is constructed after these other
objects, since it is to be informed of their existence.

	

 	

 moreButton.addActionListener(manager); ← manager contains the actionPerformed method
	

 	

 fewerButton.addActionListener(manager);
	

 	

 biggerButton.addActionListener(manager);
	

 	

 smallerButton.addActionListener(manager);
	

 	

 }
	

 }

import java.awt.*;
import java.awt.event.*;

public class Manager implements ActionListener ← this class contains an actionPerformed method
	

 {
	

 private Star theStar;
	

 private StarCanvas starCanvas;
	

 private TextCanvas textCanvas;
	

 private Button moreButton, fewerButton, biggerButton, smallerButton;

	

 public Manager(Star s, StarCanvas sCanvas, TextCanvas tCanvas, Button mButton,
	

 	

 	

 	

 	

 	

 Button fButton, Button bButton, Button sButton)
	

 	

 {
	

 	

 theStar = s; starCanvas = sCanvas; textCanvas = tCanvas; moreButton = mButton;
	

 	

 fewerButton = fButton; biggerButton = bButton; smallerButton = sButton;
	

 	

 }

	

 public void actionPerformed(ActionEvent e)
	

 	

 {
	

 	

 Object source = e.getSource();
	

 	

 if (source == moreButton)
	

 	

 	

 theStar.morePoints();
	

 	

 else if (source == fewerButton)
	

 	

 	

 theStar.fewerPoints();
	

 	

 else if (source == biggerButton)
	

 	

 	

 theStar.bigger();
	

 	

 else if (source == smallerButton)
	

 	

 	

 theStar.smaller();
	

 	

 starCanvas.repaint(); textCanvas.repaint();
	

 	

 }
	

 }

page 9–8
 Chapter 9 Buttons, Canvases, Controllers & Viewers

	

 import java.awt.*;

	

 public class StarCanvas extends Canvas
	

 	

 {
	

 	

 private Star theStar;

	

 	

 public StarCanvas(Star s)
	

 	

 	

 {
	

 	

 	

 theStar = s;
	

 	

 	

 }

	

 	

 	

 public void paint(Graphics g)
	

 	

 	

 {
	

 	

 	

 theStar.paint(g);
	

 	

 	

 }
	

 	

 }

	

 import java.awt.*;

	

 public class StatsCanvas extends Canvas
	

 	

 {
	

 	

 private Star theStar;

	

 	

 public StatsCanvas(Star s)
	

 	

 	

 {
	

 	

 	

 theStar = s;
	

 	

 	

 }

	

 	

 public void paint(Graphics g) 	

 ←	

 Coordinates on a Canvas are measured from
	

 	

 	

 {	

 	

 	

 	

 	

 the upper left corner of the Canvas. Hence the
	

 	

 	

 g.setColor(Color.black);	

 	

 	

 small coordinates.	

 	

	

 	

 	

 g.drawString("The Star:", 10, 15);
	

 	

 	

 g.drawString("Points: " + theStar.getPoints(), 20, 40);
	

 	

 	

 g.drawString("Radius: " + theStar.getRadius(), 20, 55);
	

 	

 	

 }
	

 	

 }

The StarCanvas class above takes advantage of the fact that the Star class already had a paint method. It
would be equally effective to move the paint method to the StarCanvas and remove the paint method
from the Star class. This would make the separation between the roles of the model and the viewer more
explicit.

	

 public void paint(Graphics g)	

 ← alternate paint method for StarCanvas
	

 	

 {
	

 	

 g.setColor(Color.black);
	

 	

 int points = theStar.getPoints()
	

 	

 int radius = theStar.getRadius();
	

 	

 int x = theStar.getX();
	

 	

 int y = theStar.getY();
	

 	

 int almostHalf = points/2;
	

 	

 double angle = almostHalf*2*Math.PI/points;
	

 	

 for (int p = 0; p < points; p++)
	

 	

 	

 {
	

 	

 	

 g.drawLine(x + (int)(radius * Math.sin(angle * p)),
	

 	

 	

 	

 y - (int)(radius * Math.cos(angle * p)),
	

 	

 	

 	

 x + (int)(radius * Math.sin(angle * (p+1))),
	

 	

 	

 	

 y - (int)(radius * Math.cos(angle * (p+1))));
	

 	

 	

 }
	

 	

 }

 Chapter 9 Buttons, Canvases, Controllers & Viewers
 page 9–9

import java.awt.*;

public class Star
	

 {
	

 private int x, y, points, radius;

	

 public Star(int centerHorizontal, int centerVertical)
	

 	

 {
	

 	

 x = centerHorizontal;
	

 	

 y = centerVertical;
	

 	

 points = 5;
	

 	

 radius = 50;
	

 	

 }

	

 public void paint(Graphics g)
	

 	

 {
	

 	

 paintStar(g);
	

 	

 }

	

 private void paintStar(Graphics g)
	

 	

 {
	

 	

 g.setColor(Color.black);
	

 	

 int almostHalf = points/2;
	

 	

 double angle = almostHalf*2*Math.PI/points;
	

 	

 for (int p = 0; p < points; p++)
	

 	

 	

 {
	

 	

 	

 g.drawLine(x + (int)(radius * Math.sin(angle * p)),
	

 	

 	

 	

 y - (int)(radius * Math.cos(angle * p)),
	

 	

 	

 	

 x + (int)(radius * Math.sin(angle * (p+1))),
	

 	

 	

 	

 y - (int)(radius * Math.cos(angle * (p+1))));
	

 	

 	

 }
	

 	

 }

	

 public void bigger()
	

 	

 {
	

 	

 radius += 10;
	

 	

 }

	

 public void smaller()
	

 	

 {
	

 	

 if (radius > 10)
	

 	

 	

 radius -= 10;
	

 	

 }

	

 public void morePoints()
	

 	

 {
	

 	

 points += 2;
	

 	

 }

	

 public void fewerPoints()
	

 	

 {
	

 	

 if (points > 3)
	

 	

 	

 points -= 2;
	

 	

 }

	

 public int getRadius()
	

 	

 { return radius; }

	

 public int getPoints()
	

 	

 { return points; }

	

 public int getX()
	

 	

 { return x; }

	

 public int getY()
	

 	

 { return y; }

	

 }

page 9–10
 Chapter 9 Buttons, Canvases, Controllers & Viewers

Exercise — 9.6
1.
 Reorganize one or more of the programs from chapter 6 that manipulate a list of names. Put the list

on a Canvas and use the Controller, Model, Viewer model.

 Chapter 9 Buttons, Canvases, Controllers & Viewers
 page 9–11

