
Chapter 12 Strings
12.1 A String is…

• In computer science, a string is a sequence of characters (letters, numerals, punctuation marks
etc.) such as might be entered at a keyboard or printed on a page.

• In Java, String is a class that is provided as part of the language. Each String object contains a
sequence of characters (of type char).

12.2 Creating Java Strings
• A String is constructed by placing the desired characters between double-quotes, as in:

	
 	
 	
 String name = "Joe";

• Two Strings can be concatenated (put together) by placing a plus-sign ‘+’ between them:

	
 	
 	
 String name = "Joe";
	
 	
 	
 String fullName = name + " Smith";

 fullName contains "Joe Smith". On the line above, the blank space immediately in front of Smith is
important. Without this space, fullname would contain "JoeSmith" (no space).

• Any variable can be concatenated with a String:

	
 	
 	
 Color darkBlue = new Color(0, 0, 50);
	
 	
 	
 String description = "the variable darkBlue is " + darkBlue;

 description contains "the variable darkBlue is java.awt.Color[r=0,g=0,b=50]".

Any variable will produce a String when concatenated with a String. The built-in types generally produce
reasonably descriptive strings. Objects created from programmer created classes will produce quite
uninformative strings unless a toString method is supplied. For examples of programmer created toString
methods, see sections 4.6 and 10.1.

12.3 Breaking up Strings
Using the StringTokenizer class

Java contains the class StringTokenizer (in java.util) which is intended to break a string up into pieces (such
as words). The StringTokenizer class can be used as long as each token (piece we are interested in) is
separated from the next by at least one character that can be discarded. This is generally the case if we
wish to extract words.

	
 String s = "Apples, bananas and cherries.";
	
 StringTokenizer st = new StringTokenizer(s, " ,.");
	
 while (st.hasMoreTokens())
	
 	
 {
	
 	
 String token = st.nextToken();
	
 	
 System.out.println(token);
	
 	
 }

The example prints out the four words Apples bananas and cherries, each on a separate line. The string
" ,." used in the construction of the tokenizer contains the delimiters, characters that separate words and
are to be discarded. If you were to use this example to extract words typed by someone else, you would
almost certainly use a larger delimiter set. For example: " ,.!?()[]\n\r\t". Note the space at the
beginning, this is required since we want to discard spaces. The symbols \n, \r and \t represent

 page 12–1

commonly occurring invisible characters. The first two are alternate ways of expressing the break
between lines (Java prefers \n, but text not created by Java may well contain \r and discarding it will
cause no problems). The symbol \t represents the tab character.

Methods for breaking up Strings yourself
Sometimes, you must program the extraction of tokens. To do this you will need some of the following
methods:

• The length of a String can be obtained by the length method.

	
 	
 	
 String a = "Hello";
	
 	
 	
 a.length().......... 5	
 (the number of characters in a)

• A single character can be obtained from a String with the charAt method. For the purposes of
using charAt the characters of a String lie in the range 0…length–1.

	
 	
 	
 String a = "Hello";
	
 	
 	
 a.charAt(0)........ 'H'	
 (the first position is 0)
	
 	
 	
 a.charAt(4)........ 'o'	
 (the last position is a.length() – 1)

 The example below uses length and charAt to create a copy of the string s without
 the digits (0…9).

	
 	
 	
 String s = "The 5 elephants and 17 monkeys ran for 8 hours.";
	
 	
 	
 String noDigits = "";
	
 	
 	
 for (int n = 0; n < s.length(); n++)
	
 	
 	
 	
 if (s.charAt(n) < '0' || s.charAt(n) > '9')
	
 	
 	
 	
 	
 noDigits = noDigits + s.charAt(n);

 The result is:
	
 	
 	
 	
 noDigits........ "The elephants and monkeys ran for hours."

• A portion of a String can be obtained by using the substring method. The positions between the
characters are numbered as shown. It is an error to use a position outside of the range

 0…length of string.

	
 	
 	
 String a = "Hello";
	
 	
 	
 positions:

^
0
H
^
1
e
^
2
l
^
3
l
^
4
o
^
5

	
 	
 	
 a.substring(1, 3)........................ "el"	
 (between positions 1 and 3)
	
 	
 	
 a.substring(2, 2)........................ ""	
 (empty string — between 2 and 2)
	
 	
 	
 a.substring(2)............................... "llo"	
 (from 2 to the end)
	
 	
 	
 a.substring(0, a.length())..... "Hello"	
 (between 0 and 5)

• The location in a String of the first (last) occurrence of another String (or a single char) can be
found with the indexOf (lastIndexOf) method.

	
 	
 	
 String a = "Hello, Helen and Herb!";

 positions: Hello starts at 0, Helen starts at 7, and starts at 13, Herb starts at 17

	
 	
 	
 a.indexOf('e').................................... 1	
 (the location of the ‘e’ in Hello)
	
 	
 	
 a.indexOf("Hel")............................... 0	
 (the start of the ‘Hel’ in Hello)
	
 	
 	
 a.indexOf("Her")............................. 17	
 (the start of the ‘Her’ in Herb)
	
 	
 	
 a.lastIndexOf('e')......................... 18	
 (the location of the ‘e’ in Herb)
	
 	
 	
 a.lastIndexOf("Hel")....................... 7	
 (the start of the ‘Hel’ in Helen)
	
 	
 	
 a.indexOf("Heaven")....................... -1	
 (-1 is returned when no match is found)
	
 	
 	
 a.lastIndexOf("Heaven").............. -1	
 (-1 is returned when no match is found)

page 12–2 Chapter 12 Strings

Do-it-yourself extraction example
The StringTokenizer class cannot be used when tokens are adjacent. To analyze a String with both words
and punctuation marks considered as tokens to be found, you must split up the String yourself. When the
method extractionExample below analyses the String "Apples, bananas and cherries." of the example
above, it should print out 6 items <Apples> <,> <bananas> <and> <cherries> <.>.

	
 private boolean isALetter(char ch)
	
 	
 {
	
 	
 return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z');
	
 	
 }

	
 private void extractionExample()
	
 	
 {
	
 	
 String s = "Apples, bananas and cherries.";
	
 	
 String ss = s;
	
 	
 while (ss.length() > 0)
	
 	
 	
 {
	
 	
 	
 ss = ss.trim();	
 	
 // throw out leading blanks*
	
 	
 	
 if (ss.length() > 0)
	
 	
 	
 	
 {
	
 	
 	
 	
 if (isALetter(ss.charAt(0)))	
 // the first character is a letter
	
 	
 	
 	
 	
 {
	
 	
 	
 	
 	
 int i = 1;
	
 	
 	
 	
 	
 while (i < ss.length() &&	
 // find the first non-letter**
	
 	
 	
 	
 	
 isALetter(ss.charAt(i)))
	
 	
 	
 	
 	
 i++;
	
 	
 	
 	
 	
 String token = ss.substring(0, i);	
// select characters to the non-letter
	
 	
 	
 	
 	
 System.out.println(token);	
 // print out the token
	
 	
 	
 	
 	
 ss = ss.substring(i);	
 // discard characters in the token
	
 	
 	
 	
 	
 }
	
 	
 	
 	
 else	
 	
 	
 // the first character is not a letter
	
 	
 	
 	
 	
 {
	
 	
 	
 	
 	
 String token = "" + ss.charAt(0);	
 // select one character
	
 	
 	
 	
 	
 System.out.println(token);	
 // print out the token
	
 	
 	
 	
 	
 ss = ss.substring(1);	
 // discard one character
	
 	
 	
 	
 	
 }
	
 	
 	
 	
 }
	
 	
 	
 }
	
 	
 }

* The method trim removes ‘white space’ from both the beginning and the end of the string. The term
‘white space’ includes spaces, tabs and line separators.

** Checking for the length of the String is necessary because an attempt to use charAt with an index
value greater than the length will cause an error.

Obtaining numbers from strings
Strings such as "23", "5.25" and "–1" clearly represent numbers. Java does not see these as numbers. To
have Java recognize a String as a number, Java must be asked to convert the String to an int or double (or
similar appropriate form). Examples of this conversion process appear in sections 3.8 & 9.4.2.

 Chapter 12 Strings page 12–3

