
Chapter 14 Animation and Threads
14.1 Flicker free screen updates

Not clearing the screen
Clearing the screen to the background color causes much of the flicker seen in most Java programs. The
screen is cleared by a method called update. The default update method clears the screen and then calls
paint. To avoid clearing the screen, we replace the default update method with one that just calls paint
(without clearing the screen).

The following program expands an oval on the screen.

	
 public class growingDisk extends EventPanel
	
 	
 {
	
 	
 private int size;

	
 	
 public growingDisk()
	
 	
 	
 {
	
 	
 	
 size = 5;
	
 	
 	
 }

	
 	
 public void update(Graphics g)
	
 	
 	
 {
	
 	
 	
 paint(g);
	
 	
 	
 }

	
 	
 public void paint(Graphics g)
	
 	
 	
 {
	
 	
 	
 g.setColor(Color.red);
	
 	
 	
 g.fillOval(200-size/2, 150-size/3, size, size*2/3);
	
 	
 	
 g.setColor(Color.black);
	
 	
 	
 g.drawString("Even clicking very fast produces no flicker", 50, 270);
	
 	
 	
 }

	
 	
 public void mousePressed(MouseEvent e)
	
 	
 	
 {
	
 	
 	
 if (size < 300)
	
 	
 	
 	
 {
	
 	
 	
 	
 size += 3;
	
 	
 	
 	
 repaint();
	
 	
 	
 	
 }
	
 	
 	
 }
	
 	
 }

As long as each new image covers up the last, this program does ‘the right thing’. However, if a new
image uncovers portions of a previous image, this simple technique is not enough. Not erasing the screen
means that previous images are not erased, and if they are not covered over they persist indefinitely.

 page 14–1

Double Buffering
A straight forward way of removing old images without creating flicker is to assemble each new image
off screen. The assembled image is then placed over the image on the screen — completely replacing it.

A portion of computer memory in which an image is stored is often called an image buffer. The offscreen
image we use in this section is a second buffer (the onscreen image being the first). The term double
buffering, has come to mean the assembly of a complete image off screen so the individual steps in the
assembly are not seen.

The following program places an expandable hollow rectangle on the screen.

	
 class GrowingFrame extends EventPanel
	
 	
 {
	
 	
 private int height;
	
 	
 private Image offScreen;
	
 	
 private Graphics osg;

	
 	
 public GrowingFrame()
	
 	
 	
 {
	
 	
 	
 height = 16;
	
 	
 	
 }

	
 	
 public void update(Graphics g)
	
 	
 	
 {
	
 	
 	
 paint(g);
	
 	
 	
 }

	
 	
 public void paint(Graphics g)
	
 	
 	
 {
	
 	
 	
 if (offScreen == null)
	
 	
 	
 	
 {
	
 	
 	
 	
 offScreen = createImage(getSize().width, getSize().height);
	
 	
 	
 	
 osg = offScreen.getGraphics();
	
 	
 	
 	
 }

	
 	
 	
 osg.setColor(getBackground());
	
 	
 	
 osg.fillRect(0, 0, size().width, size().height);

	
 	
 	
 osg.setColor(Color.red);
	
 	
 	
 osg.fillRect(200-height/4, 150-height/2, height/2, height/16);
	
 	
 	
 osg.fillRect(200-height/4, 150-height/2, height/16, height);
	
 	
 	
 osg.fillRect(200+height/4-height/16, 150-height/2, height/16, height);
	
 	
 	
 osg.fillRect(200-height/4, 150+height/2-height/16, height/2, height/16);

	
 	
 	
 osg.setColor(Color.black);
	
 	
 	
 osg.drawString("Even clicking very fast produces no flicker", 50, 270);
	
 	
 	
 g.drawImage(offScreen, 0, 0, null);
	
 	
 	
 }

	
 	
 public void mousePressed(MouseEvent e)
	
 	
 	
 {
	
 	
 	
 if (height < 300)
	
 	
 	
 	
 {
	
 	
 	
 	
 height += 4;
	
 	
 	
 	
 repaint();
	
 	
 	
 	
 }
	
 	
 	
 }
	
 	
 }

page 14–2 Chapter 14 Animation and Threads

14.2 Threads and Animation
Interactive Java programs such as we
have written contain several public event
handling methods (paint, keyPressed,
mousePressed). They perform their duties
as quickly as possible and then quit,
allowing the Java runtime system that
runs these methods to run another such
method.

The runtime system waits for one method
to finish before starting another. The fact
that each method is always allowed to
finish before another is started is
sometimes stated as ‘the program has
only one thread.’ This is understood to
mean that the system that runs the
program will keep track of just one
position among the program’s
instructions.

Java runtime

default
thread

update & paint

keyPressed

mousePressed

If the window
needs painting,

call paint

event handlers

If a key has
been pressed,

call keyPressed

If the mouse has
been clicked,

call mousePressed

To create an animation with which the user can interact, we need an animating method that can pause for
a while, let one or more of the event handling methods run and then continue. The standard way to run
an animating method is to explicitly create a second thread, which runs the animating method. Creating a
second thread explicitly requests that the system keep track of a second position among the programs
instructions. In our case, the second thread will maintain a position within the animating method (and
private methods it uses). Meanwhile, the default thread, which has existed in all of our programs,
maintains a position within event handling methods (and any private methods they use).

The animating method changes the state
variables, calls repaint, waits for the
painting method, waits a bit more (to be
sure the user has a chance to interact with
the program), changes the state variables
again, waits for the painting method
again..

run method

moveBall();

repaintAndWait();

delayForUser();

change
state variables

call repaint
wait for paint

sleep a while…
opportunity

for key or mouse

animation
thread

 Chapter 14 Animation and Threads page 14–3

Threads
A Java thread always starts by executing the method run belonging to some object. In many programs, we
don’t want to create a second object, so we give the main program a run method. The thread we create
will execute the run method while the other public methods (update, paint, keyPressed, mousePressed) will
be executed by the default thread that was provided with our Java window.

The mechanics of thread use require four steps:

	
 class AnimatedPanel extends EventPanel implements Runnable
	
 	
 	
 	
 	
 	
 // the first line of the class containing the run method advertises
	
 	
 	
 	
 	
 	
 // that it contains a run method — implements Runnable
	
 private Thread runner;	
 // create a reference to a Thread object

	
 runner = new Thread(this);	
// create a Thread object, telling it which object contains the run
	
 	
 	
 	
 	
 	
 // method it should run. In this case, it is the object containing
	
 	
 	
 	
 	
 	
 // this instruction.

	
 public void run()	
 	
 // put a run method into the program (for the thread to run).

Synchronization: avoiding interference between threads
When one thread is making changes to state variables that are available to another thread, it is
appropriate to ensure that all changes are done as a unit. It would likely create problems if the second
thread examined some of the state variables before they were changed and others after. To allow this kind
of control, Java allows methods to be declared synchronized. If several methods are declared synchronized, a
thread starting any one of them locks all other threads out from all such methods (until that method is
finished). Synchronized is used to create a set of methods which can only be used by one thread at a time.

Having a thread wait
If a thread has nothing useful to do for a while, there are two appropriate courses of action. One is to
relinquish rights to computer use for a specified period of time. The second is to relinquish computer time
until another thread has completed some task. The other thread would give notification when it is
finished.

To wait for a specified period of time, you call the method sleep. Calling sleep is complicated by the fact
that the sleep method is a part of the Thread class, not part of a class you are writing. Secondly, sleep may
be interrupted before the time is up and this would create an exception, which the program must be
prepared to catch.

	
 try { Thread.currentThread().sleep(100); }
	
 catch (InterruptedException exp) { }

The two lines above put the current thread asleep for 100/1000 or 1/10 of a second.

To wait for a notification by another thread, you call the method wait. Like sleep, wait may be interrupted
before the time is up and this would create an exception, which you must be prepared to catch. Also, the
wait method must be called in a synchronized method. Third, while you can wait indefinitely, you should
put a time limit on your wait, check explicitly whether or not there is anything else for you to do and go
back to waiting if appropriate.

page 14–4 Chapter 14 Animation and Threads

	
 private synchronized waitForSomethingToDo()
	
 	
 {
	
 	
 while (!somethingToDo)
	
 	
 	
 try {wait(100); }
	
 	
 	
 catch (InterruptedException exp) { }
	
 	
 }

The method above has the current thread wait for a maximum of 1/10 of a second, checks to see if there is
something to do, waits some more if appropriate…

Notifying a waiting thread
To notify another thread, you call the method notifyAll. The notifyAll method must be called in a
synchronized method. You should not only call notifyAll, you should also change some state variable to
indicate that the thread you are notifying has something to do.

	
 private synchronized notifyOtherThreads()
	
 	
 {
	
 	
 somethingToDo = true;
	
 	
 notifyAll();
	
 	
 }

 14.3 A threaded animation
The following program animates a disk, lets the user move the disk with the mouse (clicking with the
mouse makes the disk jump to the mouse), and lets the user change the color of the disk with the
keyboard (r–red, b–blue, g–green).

	
 import java.awt.*;
	
 import java.awt.event.*;

	
 public class BouncingDisk extends EventPanel implements Runnable
	
 	
 {
	
 	
 private int x, y, dx, dy;	
 // position and speed vectors for the disk
	
 	
 private Color diskColor;	
 // color of the disk
	
 	
 private Image offScreen;	
 // off screen drawing area
	
 	
 private Graphics osg;	
 // graphics for use in drawing on the off screen area
	
 	
 private int width, height;

	
 	
 private Thread runner;	
 // the second thread
	
 	
 private boolean busyPainting;	
// should the second thread be waiting for painting?
	
 	
 public BouncingDisk()
	
 	
 	
 {
	
 	
 	
 x = 100; y = 100; dx = 3; dy = -3;
	
 	
 	
 diskColor = Color.red;

	
 	
 	
 busyPainting = true;
	
 	
 	
 runner = new Thread(this);	
// the thread will use the run method in this class
	
 	
 	
 runner.start();	
 // get the thread going
	
 	
 	
 }

	
 	
 public void update(Graphics g)
	
 	
 	
 {
	
 	
 	
 paint(g);
	
 	
 	
 }

 Chapter 14 Animation and Threads page 14–5

	
 public synchronized void paint(Graphics g)
	
 	
 {
	
 	
 if (offScreen == null) // before painting the first time, create the off screen image
	
 	
 	
 {
	
 	
 	
 width = getSize().width;
	
 	
 	
 height = getSize().height;
	
 	
 	
 offScreen = createImage(width, height);
	
 	
 	
 osg = offScreen.getGraphics();
	
 	
 	
 }

	
 	
 osg.setColor(Color.lightGray);	
 // paint the background
	
 	
 osg.fillRect(0, 0, width, height);

	
 	
 osg.setColor(diskColor);	
 // paint the disk
	
 	
 osg.fillOval(x-10, y-10, 20, 20);

	
 	
 g.drawImage(offScreen, 0, 0, null);	
 // copy the off screen image to the screen
	
 	
 notifyRunner();	
 	
 // let the runner know we’re finished
	
 	
 }

	
 public void run()	
 	
 // this is the method that the second thread executes
	
 	
 {
	
 	
 while (busyPainting)	
 // wait for initial paint
	
 	
 	
 {
	
 	
 	
 waitForPainting();
	
 	
 	
 }
	
 	
 while (true)	
 	
 // loops indefinitely — until true becomes false!
	
 	
 	
 {
	
 	
 	
 moveBall();
	
 	
 	
 repaintAndWait();
	
 	
 	
 delayForUser();
	
 	
 	
 }
	
 	
 }

	
 private synchronized void moveBall()
	
 	
 {
	
 	
 if (x > width - 10) dx = -3;	
 // hit the east wall, bounce off
	
 	
 if (x < 10) dx = 3;	
 // hit the west wall, bounce off
	
 	
 if (y > height - 10) dy = -3;	
 // hit the south wall, bounce off
	
 	
 if (y < 10) dy = 3;	
 // hit the north wall, bounce off
	
 	
 x += dx; y += dy;	
 	
 // move the disk
	
 	
 }

	
 public synchronized void mousePressed(MouseEvent e)
	
 	
 {
	
 	
 x = e.getX();	
 	
 // move the disk
	
 	
 y = e.getY();
	
 	
 }

	
 public synchronized void keyPressed(KeyEvent e)
	
 	
 {
	
 	
 char key = e.getKeyChar();
	
 	
 if (key == 'r' || key == 'R')	
 // change color
	
 	
 	
 diskColor = Color.red;
	
 	
 else if (key == 'b' || key == 'B')
	
 	
 	
 diskColor = Color.blue;
	
 	
 else if (key == 'g' || key == 'G')
	
 	
 	
 diskColor = Color.green.darker();
	
 	
 }

	
 private synchronized void notifyRunner() // painting done, notify the waiting runner
	
 	
 {
	
 	
 busyPainting = false;
	
 	
 notifyAll();
	
 	
 }

page 14–6 Chapter 14 Animation and Threads

	
 private synchronized void repaintAndWait() // repaint, wait until painting is finished
	
 	
 {
	
 	
 busyPainting = true;
	
 	
 repaint();
	
 	
 while (busyPainting)	
 // this is highly recommended paranoia
 { // wait a while, then check, then wait…
	
 	
 	
 try {wait(100);}	
 // waiting 100/1000 of a second
	
 	
 	
 catch (InterruptedException exp) { }
	
 	
 	
 }
	
 	
 }

	
 private synchronized void waitForPainting()	
 // wait until painting is finished
	
 	
 {
	
 	
 while (busyPainting)	
 // this is highly recommended paranoia
 { // wait a while, then check, then wait…
	
 	
 	
 try {wait(100);}	
 // waiting 100/1000 of a second
	
 	
 	
 catch (InterruptedException exp) { }
	
 	
 	
 }
	
 	
 }

	
 private void delayForUser()	
 // sleep for 5/1000 of a second,
	
 	
 {	
 	
 	
 	
 // let keyPressed or mousePressed have a chance.
	
 	
 try { Thread.currentThread().sleep(5); }
	
 	
 catch (InterruptedException exp) { }
	
 	
 }
	
 }

 Chapter 14 Animation and Threads page 14–7

