
Chapter 17 Mutators, Replicators & Clones
17.0 Introduction

This chapter is about the relationship between Mutators & Replicators.
 Mutators change an object. — (Examples first appear in Chapter 4.)
 Replicators copy an object. — (Examples in section 17.3.)
 The method clone is a Java specific replicator. — (Examples in section 17.4.)

The issue that brought this chapter into being is illustrated by the following:

	
 Ogre ann, bob;
	
 ann = new Ogre();
	
 ann.setSize(5);
	
 ann.setColor(Color.green);
	
 ann.setSmiling(true);
→	
 bob = ann;
	
 bob.setSize(6);

One strongly suspects that the intent of the programmer is to create (and later display) two similar ogres;
ogres which are the same except for size. This does not happen because only one ogre is created. The
marked assignment just gives bob as an alternate reference for the ogre referenced by ann. At the end of
the code above, there is just one, size 6, ogre. Displaying either ann or bob will show a size 6 image. For
this to work as intended, the marked line should be something like:

	
 bob = ann.duplicate();

The method duplicate should create a new ogre, transfer all of the attributes of the previous ogre to the
new one, and then return the new ogre.

17.1 Immutable Objects
An immutable object is an object that cannot not be changed after it is constructed, an object with no
mutators. The likelihood of programmer errors of the type discussed above is so high that objects are
sometimes made without any mutators. Instead various kinds of ‘make a modified copy methods’ or
modifying replicators are supplied. A simple example is the method darker in the Color class.

	
 Color darkGreen = Color.green.darker().darker();

The line above creates a twice darkened version of Color.green without changing the original. The method
darker makes a new, darker, Color. The example makes two new Colors, each darker than the last. The first
of the two new Colors is discarded.

The java classes Color, Font, and String are examples of immutable objects. A programmer knows that
giving a reference to one of these to another programmer’s code will not result in a change to the original.
Color and String have modifying replicators (Color: brighter, darker; String: substring, toUpperCase,…).

 page 17–1

17.2 Distinguishing Mutators & Replicators
Mutators and Replicators can generally be distinguished by their return types.

Mutators: very often have a void return type. Occasionally a boolean value is returned indicating whether
or not the change was made. Even less commonly a more complex data item is returned indicating
the nature of the change made. Only in very special situations would a mutator return the same type
as the object being mutated.

Replicators: must return the new object. As one would expect, the declared return type of a replicator is
usually the type of object being replicated. However, the very important replicator clone declares its
return type to be Object. The clone method is discussed in section 17.4.

17.3 Replicators
Replicators make a new object which is a copy of the object addressed. This copy is based on the
addressed object. Sometimes an exact copy is returned. In other cases a modified copy is returned.

The queens on a chessboard example of section 15.2.2 contains an example of a replicator. The makeFuller
method in the Board class makes a new chessboard containing an additional queen. It returns the new
board as its result. If the modification fails, null is returned.

	
 class Board
	
 	
 {
	
 	
 public static final int SIZE = 4;
	
 	
 private int howMany;
	
 	
 private int board[];

	
 	
 public Board makeExactCopy()
	
 	
 	
 {
	
 	
 	
 Board b = new Board();
	
 	
 	
 b.howMany = howMany;
	
 	
 	
 for (int c=0; c<board.length; c++)
	
 	
 	
 	
 b.board[c] = board[c];
	
 	
 	
 return b;
	
 	
 	
 }

The instance variables of the class Board from
section 15.2.2 and a method makeExactCopy are
shown at the left. The copy is made by creating
a new board b = new Board() and then each
instance variable is copied.

The elements of the array are copied one by one.
It is tempting to write b.board = board with the
expectation that this will copy the array.
However, in Java, the = operator only copies
scalar variables (int, char, double, boolean…). The
expression b.board = board would not copy the
elements of the array. The use of this expression
would result in both objects referring to the
same array — if an array element in one object
were changed, the corresponding element in the
other object would change with it.

Since whole objects (this includes arrays) are not copied by ‘=’, it is necessary to explicitly copy their
elements when making a copy. If an object contains objects which refer to other objects which refer to
other objects… such copying is tedious at best. To help alleviate this problem, there is a standard way to
copy objects.

The standard form for copying objects is the subject of the next section. Extensive special language
features were not created for copying objects. As a result, the standard form for copying objects is rather
complex.

page 17–2 Chapter 17 Mutators, Replicators & Clones

17.4 Clones
A replicator that creates an unmodified copy is called a cloning method, the returned object being the
clone. In Java, there is a standard signature for a cloning method:

• A clone method should have the signature: public Object clone()

Object is a special class in Java. All classes extend Object, directly or indirectly. When you create a class
without declaring that you are extending some other class, the Java compiler creates your class as an
extension of Object. Thus a return type of Object means that any kind of object can be returned.

The important positive consequence of all clone methods having the same signature is that the clone
method of a subclass is called when appropriate. A less desirable consequence of this consistent signature
is that the result of a clone method must be cast to the appropriate type. An object reference is cast by
placing the type that the object should be considered to have in parentheses:

	
 private Ogre ornery, grouch;
	
 private AButton fewerButton, moreButton;
	
 ...
	
 grouch = (Ogre)ornery.clone();	
 	
 // ornery.clone() is cast as an Ogre
	
 moreButton = (AButton)fewerButton.clone(); // fewerButton.clone() is cast as an AButton	

Cloning an Object containing Scalar Variables and References to Immutable Objects
A clone method includes a call to super.clone — which calls the clone method in the class Object. The clone
method in Object copies all scalar variables and object references (but not any objects the references refer
to).

The standard way to write a clone method for an object with only scalar variables and immutable objects
is shown in this example:

	
 class Ogre implements Cloneable	
 // A class containing a clone method
	
 	
 {	
 	
 	
 	
 // is declared to implement Cloneable.
	
 	
 private int left, top;
	
 	
 private boolean smiling;
	
 	
 private String name;
	
 	
 private Color skinColor;
	
 	
 ...

	
 	
 	
 public Object clone()
	
 	
 	
 {
	
 	
 	
 try
	
 	
 	
 	
 {
	
 	
 	
 	
 return super.clone();	
 // super.clone makes a new Ogre and
	
 	
 	
 	
 }	
 	
 // copies all of the scalar variables
	
 	
 	
 catch (CloneNotSupportedException e)	
 // and object references.
	
 	
 	
 	
 {
	
 	
 	
 	
 return null;
	
 	
 	
 	
 }
	
 	
 	
 }
	
 	
 }

The clone method above is used as long as none of the instance variables refers to a mutable object. It is
common practice to have multiple references to an immutable object. This is ok, an immutable object will
always look the same as any copy, since neither can be changed.

 Chapter 17 Mutators, Replicators & Clones page 17–3

Cloning an Object containing References to Mutable Objects
The clone method in Object copies all scalar variables and object references (but not any objects the
references refer to). When there are instance variables that refer to mutable objects, those objects need to
be explicitly cloned.

class OgreCouple implements Cloneable
	
 {
	
 private Ogre him, her;
	
 private boolean married;
	
 ...
	
 public Object clone()
	
 	
 {
	
 	
 try
	
 	
 	
 {
	
 	
 	
 OgreCouple c = (OgreCouple)super.clone();
	
 	
 	
 if (him != null)	
 	
 // If him or her is not null, the referenced
	
 	
 	
 	
 c.him = (Ogre)him.clone();	
 // object is explicitly cloned.
	
 	
 	
 if (her != null)
	
 	
 	
 	
 c.her = (Ogre)her.clone();
	
 	
 	
 return c;
	
 	
 	
 }
	
 	
 catch (CloneNotSupportedException e)
	
 	
 	
 {
	
 	
 	
 return null;
	
 	
 	
 }
	
 	
 }
	
 }

Cloning an Object containing References to One-dimensional Arrays
Arrays are mutable objects — their elements can be changed. Arrays must be explicitly cloned and then if
the elements of the array are object references, the objects the elements reference must also be cloned.

class OgrePicnic implements Cloneable
	
 {
	
 private Ogre crowd[];
	
 private int tableSizes[];
	
 ...
	
 public Object clone()
	
 	
 {
	
 	
 try
	
 	
 	
 {
	
 	
 	
 OgrePicnic p = (OgrePicnic)super.clone();	
 // super.clone makes a new OgrePicnic,
	
 	
 	
 p.crowd = (Ogre[])crowd.clone();	
 // The array crowd must be cloned.
	
 	
 	
 for (int n=0; n<crowd.length; n++)	
 // The mutable objects referenced by
	
 	
 	
 	
 if (crowd[n] != null)	
 	
 // crowd are explicitly cloned.
	
 	
 	
 	
 	
 p.crowd[n] = (Ogre)crowd[n].clone();
	
 	
 	
 p.tableSizes = (int[])tableSizes.clone();	
 // The array tableSizes must be cloned.
	
 	
 	
 return p;
	
 	
 	
 }
	
 	
 catch (CloneNotSupportedException e)
	
 	
 	
 {
	
 	
 	
 return null;
	
 	
 	
 }
	
 	
 }
	
 }

page 17–4 Chapter 17 Mutators, Replicators & Clones

Cloning an Object containing References to Multi-dimensional Arrays
If an object contains a two-dimensional array, then the whole array and each non-null sub-array in the
array must be cloned. If the entries are object references, then referenced non-null objects must also be
cloned. If the crowd of Ogres above were two-dimensional, it would be cloned as follows:

	
 p.crowd = (Ogre[][])crowd.clone();
	
 for (int n=0; n<crowd.length; n++)
	
 	
 if (crowd[n] != null)
	
 	
 	
 {
	
 	
 	
 p.crowd[n] = (Ogre[])crowd[n].clone();
	
 	
 	
 for (int m=0; m<crowd[n].length; m++)
	
 	
 	
 	
 if (crowd[n][m] != null)
	
 	
 	
 	
 	
 p.crowd[n][m] = (Ogre)crowd[n][m].clone();
	
 	
 	
 }

If an object contains a three-dimensional array, it is equally true that the whole array and each non-null
sub-array must be cloned. If the entries are object references, then referenced non-null objects must also
be cloned. If the crowd of Ogres above were three-dimensional, it would be cloned as follows:

	
 p.crowd = (Ogre[][][])crowd.clone();
	
 for (int n=0; n<crowd.length; n++)
	
 	
 if (crowd[n] != null)
	
 	
 	
 {
	
 	
 	
 p.crowd[n] = (Ogre[][])crowd[n].clone();
	
 	
 	
 for (int m=0; m<crowd[n].length; m++)
	
 	
 	
 	
 if (crowd[n][m] != null)
	
 	
 	
 	
 	
 {
	
 	
 	
 	
 	
 p.crowd[n][m] = (Ogre[])crowd[n][m].clone();
	
 	
 	
 	
 	
 for (int q=0; q<crowd[n][m].length; q++)
	
 	
 	
 	
 	
 	
 if (crowd[n][m][q] != null)
	
 	
 	
 	
 	
 	
 	
 p.crowd[n][m][q] = (Ogre)crowd[n][m][q].clone();
	
 	
 	
 	
 	
 }
	
 	
 	
 }

Cloning an Object containing References to Standard Java Objects
Many standard Java classes have no clone method. Generally, this is for good reason:

 1. Immutable objects do not need to be cloned.

2. Some objects contain components that are not written in Java. Providing clone methods for these
objects would be excessively difficult. Examples include Buttons & TextFields.

 Chapter 17 Mutators, Replicators & Clones page 17–5

