
Appendix C Control Structures
Control Structures

Within the body of a method, there are several forms that can be used to decide which commands are to
be performed and in what order to perform them.

Warning:
 All control structures have 'heading lines' which should not have semi-colons at the end. Don't put

semi-colons at the end of the heading lines! Doing so causes errors, often run time errors that are
notoriously hard to find and correct.

The if structure

	
 if (true or false expression)
	
 	
 command;

or if (true or false expression)
	
 {
	
 command;
	
 command;	
 	
 any number of commands
	
 command;
	
 }

The if structure can be extended to give two alternative sets of commands, one set will be done:

	
 if (true or false expression)
	
 	
 command;
	
 else
	
 	
 command;

A single command can be replaced by a group
of commands (as in the example above).

The if structure can also be extended indefinitely in the following way. One set of commands will be done:

	
 if (true or false expression)
	
 	
 command;
	
 else if (true or false expression)
	
 	
 command;
	
 else if (true or false expression)
	
 	
 command;
	
 else if (true or false expression)
	
 	
 command;
	
 else
	
 	
 command;

A single command can be replaced by a group
of commands.

The last else and the last command can be
omitted if there aren’t any commands to do
when all of the expressions are false.

 page C–1

The while structure
The form of the while structure is just like if . There is no else option, however.

	
 while (true or false expression)
	
 	
 command;

or while (true or false expression)
	
 {
	
 command;
	
 command;	
 	
 any number of commands
	
 command;
	
 }

While can be described as a “stubborn if”. It works like if; but, in addition, if the expression is true, then
after doing the command (or commands), the expression is checked again. If the expression remains true,
the commands are repeated. This is done over and over until, after the commands have been repeated (for
perhaps the umpteenth time), the expression has become false.

The example below draws several horizontal lines (each one 10 dots below the other).

	
 int row = 20;
	
 while (row <= 100)
	
 	
 {
	
 	
 g.drawLine(10, row, 100, row);
	
 	
 row = row + 10;
	
 	
 }

WARNINGS:

• Don‘t put a semi-colon at the end of the line starting with while! If you do the loop will get 'stuck'
comparing row and 100 over and over. This misbehavior is very common, and has cost computer
programmers very many hours of frustration.

• If the expression never becomes false, the computer will ‘get stuck’ performing the commands
over and over, and the program will appear to ‘freeze’. This is a very common error in computer
programs.

page C–2 Appendix C Control Structures

The for structure
The for structure is a shorthand way of writing a while structure. It is almost exactly equivalent to the while
structure. There is one technical difference which is discussed after the examples.

	
 for (initialization; true or false expression; incrementation)
	
 	
 command;

	
 	
 	
 	
 or

	
 for (initialization; true or false expression; incrementation)
	
 	
 {
	
 	
 command;
	
 	
 command;	
 	
 any number of commands
	
 	
 command;
	
 	
 }

The following structures are almost exactly equivalent:

 1.	
 int row = 20;
	
 	
 while (row <= 100)
	
 	
 	
 {
	
 	
 	
 g.drawLine(10, row, 100, row);
	
 	
 	
 row = row + 10;
	
 	
 	
 }

 2.	
 int row;
	
 	
 for (row = 20; row <= 100; row = row + 10)
	
 	
 	
 g.drawLine(10, row, 100, row);

 3.	
 for (int row = 20; row <= 100; row = row + 10)
	
 	
 	
 g.drawLine(10, row, 100, row);

The initialization part of a for structure can be left blank as can the incrementation part. Thus, the
following example is also equivalent (although hardly reasonable).

 4.	
 int row = 20;
	
 	
 for (; row <= 100;)
	
 	
 	
 {
	
 	
 	
 g.drawLine(10, row, 100, row);
	
 	
 	
 row = row + 10;
	
 	
 	
 }

All of the examples in this section draw the same lines on the screen. The only difference is that in
example #3 (the variable row is declared in the initialization section of the for structure), the variable row is
not available for use in commands that might follow the for structure. The variable that controls a loop
generally should not be used outside of the loop, thus example #3 is usually appropriate.

WARNING:

• Don‘t put a semi-colon at the end of the line starting with for! If you, version 3 will report a
syntax error — the others will draw a single line with row equal to 100. This misbehavior is very
common, and has cost computer programmers very many hours of frustration.

 Appendix C Control Structures page C–3

The do…while structure
The do…while structure works like the while structure except that commands are done the first time
without checking the true or false expression. After the first time, do…while and while act in the same way.

	
 do
	
 	
 command;
	
 while (true or false expression);

or
do
	
 {
	
 command;
	
 command;	
 	
 any number of commands
	
 command;
	
 }
while (true or false expression);

The switch structure
The switch structure is a shorthand form of if – else if – else… that can be used only in certain restricted
circumstances. The principle reason for using the switch structure is convenience. It is true, however, that
when used correctly, the switch structure may produce faster programs than the equivalent if – else
structure.

switch (integer type variable)
	
 {
	
 case integer type constant:
	
 case integer type constant:	
 any number of cases
	
 	
 command;	
 	
 any number of commands
	
 	
 break;
	
 case integer type constant:	
 any number of cases
	
 	
 command;	
 	
 any number of commands
	
 	
 break;
	
 case integer type constant:	
 any number of cases
	
 	
 command;	
 	
 any number of commands
	
 	
 break;
	
 default:
	
 	
 command;	
 	
 any number of commands (including just a semi-colon)
	
 }

The integer type variable should be a variable of type byte, short, int, long or char.

The case constants are values that the variable might attain. Each case constant must have a different
value.

When the switch structure is translated, an array may be produced with subscripts ranging from the
smallest case constant to the largest. If the difference between the smallest and largest constants is very
great, a very large array may be produced. For this reason, do not write switch statements with widely
separated constant values; use if – else instead.

WARNING:

 DON’T FORGET the BREAK command after each group of commands. Leaving out break commands
will not create syntax errors, but the program will not run properly.

page C–4 Appendix C Control Structures

