Homework 5 (Gauss-Jordan Elimination)

MA 103, Instructor: Jeffrey Horn, Winter 2017

Instructions

Read section Section 2.1 of Chapter 2 of our textbook. Answer the questions below. Show work for partial credit but be sure to indicate clearly your final answer! (e.g., put a box around it) Attach extra sheets of paper if you need more space.

Question 1.

Write the augmented matrix corresponding to the following set of equations:

$$
\begin{aligned}
x+2 y & =8 \\
-4 x-9 y & =99
\end{aligned}
$$

Question 2.

Write the augmented matrix corresponding to the following set of equations:

$$
\begin{aligned}
30 x-22 y+7 z & =340 \\
16 x-19 y-50 z & =-213 \\
x+y+z & =1
\end{aligned}
$$

Question 3.

Write the system of linear equations corresponding to the following augmented matrix:
$\left[\begin{array}{ccc|c}1 & 4 & -7 & 44 \\ 0 & -12 & -1 & -5 \\ -1 & 15 & 0 & 111\end{array}\right]$

Question 4.

Carry out the indicated elementary row operations:
\(\left[\begin{array}{cc|c}1 \& 4 \& -7

-2 \& -1 \& -1\end{array}\right] \quad\)| $\left(R_{2}+2 R_{1}\right)$ |
| :--- | :--- |$\quad[\square]$

Question 5.

Carry out the indicated elementary row operations:
$\left[\begin{array}{cc|c}-3 & 14 & 10 \\ -6 & 12 & 458\end{array}\right] \underset{\left(-\frac{1}{3} R_{1}\right)}{\longrightarrow} \quad[\square$

Question 6.

State the next elementary row operation that should be performed in order to put the matrix below into diagonal form. Then perform the operation.

$$
\left[\begin{array}{cc|c}
5 & 4 & -6 \\
2 & -1 & -22
\end{array}\right] \quad(\quad \longrightarrow \quad) \quad[\quad \mid
$$

Question 7.

State the next elementary row operation that should be performed in order to put the matrix below into diagonal form. Then perform the operation.
$\left[\begin{array}{cc|c}1 & 4 & -2 \\ 3 & -1 & 12\end{array}\right] \quad(\quad \longrightarrow \quad) \quad[\square$

Question 8.

State the next elementary row operation that should be performed in order to put the matrix below into diagonal form. Then perform the operation.
$\left[\begin{array}{ccc|c}0 & 14 & -2 & 77 \\ 3 & -1 & 12 & -10 \\ -8 & 23 & 5 & -1\end{array}\right] \quad(\quad \longrightarrow \quad) \quad[\square$

Question 9.

Solve the linear system by Gauss-Jordan elimination:

$$
\begin{aligned}
x+7 y & =8 \\
4 x-2 y & =14
\end{aligned}
$$

Question 10.

Solve the linear system by Gauss-Jordan elimination:

$$
\begin{aligned}
2 x-2 y+3 z & =12 \\
x-3 y-4 z & =-2 \\
-6 x+y+3 z & =10
\end{aligned}
$$

