Instr. Jeffrey Horn	NA	ME:
Handed Out: Thursday, Au	ıg. 25, 2016	Due: Thursday, Sept. 1, 2016 in class (hard deadline!)
SHOW your work for partia	l credit but clear	ly indicate your FINAL ANSWER with a BOX around it!
(1)		
computer prog	ram before lu	following statements: n : I finish writing my such; o : I play tennis in the afternoon; p : The dity is low. Write the following in symbolic
a) If the sun is	shining, I sha	all play tennis this afternoon.
b) Finishing t	the writing o	of my computer program before lunch is tennis this afternoon.
c) The sun is s	shining and I s	shall play tennis this afternoon.
d) Low humic afternoon,	lity and sunsh	nine are sufficient for me to play tennis this
ANSWER to (l)a:		
ANSWER to (1)b:		
ANSWER to (l)c:		
ANSWER to (l)d:		
(2) Let p, q, r denote tl	ne following	statements: p: Triangle ABC is isosceles; q:
• •	uilateral; r: Tr n English sent b)	iangle ABC is equiangular. Translate each of
ANSWER to (2)a:		
ANSWER to (2)b:		
ANSWER to (2)c:		

ANSWER t

ANSWER to (2)e:

(3)

Let s be the following statement.

If you are studying hard, then you are staying up late at nights.

- (a) Give the converse of s.
- (b) Give the contrapositive of s.

ANSWER to (3)a:

ANSWER to (3)b:

(4) Finish the following truth table:

р	q	p∧q	$\overline{p \wedge q}$	$\bar{p} \vee \bar{q}$	p∨q	$\overline{p \vee q}$	$\overline{p} \wedge \overline{q}$
0	0	0					
0	1	0	9				
1	0	0					
1	1	1					

(5) Finish the following truth table:

p			(pvq)		$(p \lor q) \land (\overline{p \land q})$
О	О	O	О	1	
		1		1	
1	О	1	1	1	
1					

(6) Finish the following truth table:

р	q	p→q	q→p	$(p\rightarrow q)\wedge(q\rightarrow p)$	p↔q
0	0	1			
0	1	. 1			
1	0	0			
Т	T	1	,		

(7)

- . A technician suspects that one or more of the processors in a distributed system is not working properly. The processors, A, B, and C, are all capable of reporting information about the status (working or not working) of the processors in the system. The technician is unsure whether a processor is really not working, or whether the problem is in the status reporting routines in one or more of the processors. After polling each processor, the technician receives the following status reports.

 - \bullet Processor B reports that A is working if and only if B is working.
 - \bullet Processor C reports that at least one of the other two processors is not working.

Help the technician by answering the following questions.

- (a) Let a= "A is working," b= "B is working," and c= "C is working." Write the three status reports in terms of a,b, and c, using the symbols of formal logic.
- (b) Complete the following truth table.

a	b	С	A's report	B's report	C's report
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- (c) Assuming that all of the status reports are true, which processor(s) is/are working?
- (d) Assuming that all of the processors are working, which status report(s) is/are false?
- (e) Assuming that a processor's status report is true if and only if the processor is working, what is the status of each processor?

TRUTH TABLES for ALL TWO-INPUT BOOLEAN FUNCTIONS

that Rosen numbers these in reverse order in Ch. 11). Of these 16, two are the constant functions (always true or always There are $2^2 = 4$ possible input combinations. Therefore there are $2^4 = 16$ possible boolean functions: F_0 to F_{15} (note false),which depend on neither input, and four are functions of one of the inputs only: $a, b, \overline{a}, \overline{b}$. That leaves ten that must be functions of BOTH inputs!

INPL	SLI	F_{0000}	F_{0001}	F_{0010}	F_{0100}	F_{0110}	F_{01111}	F_{1000}	F_{1001}	F_{1011}	F_{1101}	F_{1110}	F_{11111}
a	9	F_0	F_1	F_2	F_4	F_6	F_7	F_8	F_9	F_{11}	F_{13}		F_{15}
0	0	0	0	0	0	0	0	1	1	1	1	1	1
0	1	0	0	0	1	1	1	0	0	0	1	1	1
1	0	0	0	1	0	1	1	0	0	П	0	П	1
1	1	0	1	0	0	0	1	0	1	1	1	0	П
NAME:	(ifany)	٠,		•									
							8						