assign(order, kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% Cheban
x * ((x * y) * z) = (y * (z * x)) * x.
% LCC
x * (y * z) = ((x * y) / x) * (x * z).
% RCC
(z * y) * x = (z * x) * (x \ (y * x)).
% R(x^2) = L(x^2)
u * (x * x) = (x * x) * u.
% WIP
x * ((y * x) \ 1) = y \ 1.
% 2-sided inverse
x' * x = 1.
x * x' = 1.
% associator, a(x,y,z), defined
(x * y) * z = (x * (y * z)) * a(x,y,z).
% commatator, K(x,y), defined
x * y = (y * x) * K(x,y).
end_of_list.
formulas(goals).
K(K(x,y),z) = 1.
end_of_list.
assign(order,
kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x =
x.
x * 1 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% Cheban
x * ((x
* y) * z) = (y * (z * x)) * x.
% LCC
x * (y *
z) = ((x * y) / x) * (x * z).
% RCC
(z * y)
* x = (z * x) * (x \ (y * x)).
% R(x^2)
= L(x^2)
u * (x *
x) = (x * x) * u.
% WIP
x * ((y
* x) \ 1) = y \ 1.
%
2-sided inverse
x' * x =
1.
x * x' =
1.
%
associator, a(x,y,z), defined
(x * y)
* z = (x * (y * z)) * a(x,y,z).
%
commatator, K(x,y), defined
x * y =
(y * x) * K(x,y).
% so
K(K(x,y),z)
= 1.
end_of_list.
formulas(goals).
a(K(x,y),u,v)
= 1.
end_of_list.
assign(order,
kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x =
x.
x * 1 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% Cheban
x * ((x
* y) * z) = (y * (z * x)) * x.
% LCC
x * (y *
z) = ((x * y) / x) * (x * z).
% RCC
(z * y)
* x = (z * x) * (x \ (y * x)).
% R(x^2)
= L(x^2)
u * (x *
x) = (x * x) * u.
% WIP
x * ((y
* x) \ 1) = y \ 1.
%
2-sided inverse
x' * x =
1.
x * x' =
1.
%
associator, a(x,y,z), defined
(x * y)
* z = (x * (y * z)) * a(x,y,z).
%
commatator, K(x,y), defined
x * y =
(y * x) * K(x,y).
% so
K(K(x,y),z)
= 1.
a(K(x,y),u,v)
= 1.
end_of_list.
formulas(goals).
a(u,v,K(x,y))
= 1.
end_of_list.
assign(order,
kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x =
x.
x * 1 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% Cheban
x * ((x
* y) * z) = (y * (z * x)) * x.
% LCC
x * (y *
z) = ((x * y) / x) * (x * z).
% RCC
(z * y)
* x = (z * x) * (x \ (y * x)).
% R(x^2)
= L(x^2)
u * (x *
x) = (x * x) * u.
% WIP
x * ((y
* x) \ 1) = y \ 1.
%
2-sided inverse
x' * x =
1.
x * x' =
1.
%
associator, a(x,y,z), defined
(x * y)
* z = (x * (y * z)) * a(x,y,z).
%
commatator, K(x,y), defined
x * y =
(y * x) * K(x,y).
% so
K(K(x,y),z)
= 1.
a(K(x,y),u,v)
= 1.
a(u,v,K(x,y))
= 1.
end_of_list.
formulas(goals).
K(a(x,y,z),u)
= 1.
end_of_list.
assign(order,
kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x =
x.
x * 1 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% Cheban
x * ((x
* y) * z) = (y * (z * x)) * x.
% LCC
x * (y *
z) = ((x * y) / x) * (x * z).
% RCC
(z * y)
* x = (z * x) * (x \ (y * x)).
% R(x^2)
= L(x^2)
u * (x *
x) = (x * x) * u.
% WIP
x * ((y
* x) \ 1) = y \ 1.
%
2-sided inverse
x' * x =
1.
x * x' =
1.
%
associator, a(x,y,z), defined
(x * y)
* z = (x * (y * z)) * a(x,y,z).
%
commatator, K(x,y), defined
x * y =
(y * x) * K(x,y).
% so
K(K(x,y),z)
= 1.
a(K(x,y),u,v)
= 1.
a(u,v,K(x,y))
= 1.
K(a(x,y,z),u)
= 1.
end_of_list.
formulas(goals).
a(x,y,a(u,v,w))
= 1.
end_of_list.
assign(order,
kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x =
x.
x * 1 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% Cheban
x * ((x
* y) * z) = (y * (z * x)) * x.
% LCC
x * (y *
z) = ((x * y) / x) * (x * z).
% RCC
(z * y)
* x = (z * x) * (x \ (y * x)).
% R(x^2)
= L(x^2)
u * (x *
x) = (x * x) * u.
% WIP
x * ((y
* x) \ 1) = y \ 1.
%
2-sided inverse
x' * x =
1.
x * x' =
1.
%
associator, a(x,y,z), defined
(x * y)
* z = (x * (y * z)) * a(x,y,z).
%
commatator, K(x,y), defined
x * y =
(y * x) * K(x,y).
% so
K(K(x,y),z)
= 1.
a(K(x,y),u,v)
= 1.
a(u,v,K(x,y))
= 1.
a(x,y,a(u,v,w))
= 1.
K(a(x,y,z),u)
= 1.
a(x,y,a(u,v,w))
= 1.
end_of_list.
formulas(goals).
a(a(x,y,z),u,v)
= 1.
end_of_list.